
CS106X

Autumn 2015 Cynthia Lee

Section 7 (Week 8) Handout
Problem and solution authors include Marty Stepp.

Reference Sheet:
This	week	is	about	graphs	with	vertexes	and	edges.	The	first	couple	pages	are	cheat	sheets	for	
graph	terminology	and	common	search	algorithms.	Recommended	problems:	do	1-4	to	get	
comfortable.	5-7	are	good	problems	to	start	with,	and	give	8	a	shot	if	you	are	feeling	adventurous.	

graph:	A	data	structure	containing:
				a	set	of	vertexes	V			(sometimes	called	"nodes"),	
				a	set	of	edges	E		("arcs"),	where	each	is	a	connection	between	2	vertexes.	
degree:	number	of	edges	touching	a	given	vertex.	
path:	A	path	from	vertex	A	to	B	is	a	sequence	of	edges	that	can	be	followed	
starting	from	A	to	reach	B.	
				can	be	represented	as	vertexes	visited,	or	edges	taken	
neighbor	or	adjacent:	Two	vertexes	connected	directly	by	an	edge.	
reachable:	Vertex	A	is	reachable	from	B	if	a	path	exists	from	A	to	B.	
connected	graph:	A	graph	is	connected	if	every	vertex	is	reachable	from	every	other.
cycle:	A	path	that	begins	and	ends	at	the	same	vertex.	
				acyclic	graph:	One	that	does	not	contain	any	cycles.	
				loop:	An	edge	directly	from	a	vertex	to	itself.	
weight:	Cost	associated	with	a	given	edge.	
				weighted	graph:	One	where	edges	have	weights	(see	graph	below).	
directed	graph:	A	graph	where	edges	are	one-way	connections.	
undirected	graph:	A	graph	where	edges	don’t	have	a	direction.
	depth-first	search	(DFS):	Finds	a	path	between	two	vertexes	by	
exploring	each	possible	path	as	far	as	possible	before	
backtracking.	
				Often	implemented	recursively.	
breadth-first	search	(BFS):	Finds	a	path	between	two	vertexes	by	
taking	one	step	down	all	paths	and	then	immediately	backtracking.	
				Often	implemented	by	maintaining	a	queue	of	vertexes	to	visit.	
Dijkstra's	algorithm:	Finds	paths	between	one	vertex	and	all	other	vertexes	by	maintaining	
information	about	how	to	reach	each	vertex	(cost	and	previous	vertex)	and	continually	improving	
that	information	until	it	reaches	the	best	solution.	
				Often	implemented	by	maintaining	a	priority	queue	of	vertexes	to	visit.	
A*	algorithm:	A	variation	of	Dijkstra's	algorithm	that	incorporates	a	heuristic	function	to	prioritize	
the	order	in	which	to	visit	the	vertexes.	
minimum	spanning	tree:	the	set	of	connected	edges	with	the	smallest	total	weight	that	covers	
every	vertex	in	the	graph	
Kruskal’s	algorithm:	An	algorithm	to	find	the	minimum	spanning	tree	of	a	graph	

 2

Depth-first	search	(DFS)	pseudo-code:	
function	dfs(v1,	v2):	
		dfs(v1,	v2,	{	}).	
	
function	dfs(v1,	v2,	path):	
		path	+=	v1.	
		mark	v1	as	visited.	
		if	v1	is	v2:	
				a	path	is	found!	
	
		for	each	unvisited	neighbor	n	of	v1:	
				if	dfs(n,	v2,	path)	finds	a	path:	
						a	path	is	found!	
	
		path	-=	v1.		//	path	is	not	found.	

Breadth-first	search	(BFS)	pseudo-code:	
function	bfs(v1,	v2):	
		queue	:=	{v1}.	
		mark	v1	as	visited.	
	
		while	queue	is	not	empty:	
				v	:=	queue.dequeue().	
				if	v	is	v2:	
						a	path	is	found!	
	
				for	each	unvisited	neighbor	n	of	v:	
						mark	n	as	visited.	
						queue.enqueue(n).	
	
		//	path	is	not	found.	

Dijkstra's	algorithm	pseudo-code:	
	
function	dijkstra(v1,	v2):	
		for	each	vertex	v:	
				v's	cost	:=	infinity.	
				v's	previous	:=	none.	
		v1's	cost	:=	0.	
		pqueue	:=	{v1,	at	priority	0}.	
	
		while	pqueue	is	not	empty:	
				v	:=	pqueue.dequeue().	
				mark	v	as	visited.	
				for	each	unvisited	neighbor	n	of	v:	
						cost	:=	v's	cost	+		
														weight	of	edge	(v,	n).	
						if	cost	<	n's	cost:	
								n's	cost	:=	cost.	
								n's	previous	:=	v.	
								enqueue/update	n	in	pqueue.	
		reconstruct	path	back	from	v2	to	v1.	

A*	algorithm	pseudo-code:	
	
function	astar(v1,	v2):	
		for	each	vertex	v:	
				v's	cost	:=	infinity.	
				v's	previous	:=	none.	
		v1's	cost	:=	0.	
		pqueue	:=	{v1,	at	priority	H(v1,	v2)}.	
	
		while	pqueue	is	not	empty:	
				v	:=	pqueue.dequeue().	
				mark	v	as	visited.	
				for	each	unvisited	neighbor	n	of	v:	
						cost	:=	v's	cost	+		
														weight	of	edge	(v,	n).	
						if	cost	<	n's	cost:	
								n's	cost	:=	cost.	
								n's	previous	:=	v.	
								enqueue	n	at	priority	(cost	+	H(n,	v2)).	
		reconstruct	path	back	from	v2	to	v1.	

Important parts of Stanford Graph library: (more online)	

BasicGraph()	
g.addEdge(v1,	v2);	
g.addVertex(vertex);	
g.clear();	
g.getEdge(v1,	v2)	
g.getEdgeSet()	
g.getEdgeSet(vertex)	
g.getNeighbors(vertex)	

g.getVertex(name)	
g.getVertexSet()	
g.isConnected(v1,	v2)	
g.isEmpty()	
g.removeEdge(v1,	v2);	
g.removeVertex(vertex);	
g.size()	
g.toString()	
	

	
struct	Vertex	{								
				string	name;	
				Set<Edge*>	edges;	

				double	cost;						//	initially	0.0	
				bool	visited;					//	initially	false	
				Vertex*	previous;	//	initially	NULL	
};	
	

	
struct	Edge	{	
				Vertex*	start;	
				Vertex*	finish;	
				double	cost;	

				bool	visited;			//	initially	false	
};	

 3

Problem 1: Graph Searching
a.	 Graph	properties	

For	the	graphs	shown	below,	answer	the	following	questions:	

i)	Which	graphs	are	directed,	and	which	are	undirected?	
ii)	Which	graphs	are	weighted,	and	which	are	unweighted?	
iii)	Which	graphs	are	connected,	and	which	are	not?		Is	any	graph	strongly	connected?	
iv)	Which	graphs	are	cyclic,	and	which	are	acyclic?	
v)	What	is	the	degree	of	each	vertex?		(If	it	is	directed,	what	is	the	in-degree	and	out-degree?)	

	

Graph	1:	
	
A	-->	B	<--	C	
|					|					^	
|					|					|	
V					V					|	
D	<--	E	-->	F	
|					^					^	
|					|					|	
V					|					|	
G	<->	H	<--	I	
	

Graph	2:	
	
A					B----C	
|					|_				
|					|		_		
D-----E				F	

Graph	3:	
	
A	<-->	B	<--	C	
|						^	
V						|	
D	<-->	E	

Graph	4:	
	
				3	
		A---B	
		|		/	
	5|	/2	
		|/	
		C			D---E	
								8	

Graph	5:	
	
A-----B	
|\			/|	
|	\	/	|	
|		+		|	
|	/	\	|	
|/			\|	
C-----D	

Graph	6:	

			/				8							\	
		/		4							1			V			7	
	A	<----	B	<--->	C	---->	D	
	^							^							|							^	
1|						2|							|5						|	
	|							|							|						1/	
	V			2			V			3			V						/	
	E	<--->	F	<----	G	----/	

b.	 depth-first	search	(DFS)	
Write	the	paths	that	a	depth-first	search	would	find	from	vertex	A	to	all	other	vertexes	in	graphs	1	
and	6.	If	a	given	vertex	is	not	reachable	from	vertex	A,	write	"no	path"	or	"unreachable".	

	
c. breadth-first search (BFS)

Write the paths that a breadth-first search would find from vertex A to all other vertexes in
graphs 1 and 6. Which paths are shorter than the ones found by DFS in the previous problem?
	

d.	 minimum	weight	paths	
Which	paths	found	by	DFS	and	BFS	on	Graph	6	in	the	previous	problems	are	not	minimal	weight?	
What	are	the	minimal	weight	paths	from	vertex	A	to	all	other	nodes?		(Just	inspect	the	graph	
manually.)	

	

	

 4

e. kthLevelFriends. Imagine	a	graph	of	Facebook	friends,	where	users	are	vertexes	and	friendships	
are	edges.	Write	a	function		

Set<Vertex*>	kthLevelFriends(BasicGraph&	graph,	Vertex*	v,	int	k)	

that	returns	the	set	of	people	who	are	exactly	k	hops	away	from	the	vertex	v	(and	not	fewer).	For	
example,	if	k	=	1,	those	are	v’s	direct	friends;	if	k	=	2,	they	are	your	friends-of-friends.	If	k	=	0,	return	
a	set	containing	only	the	user.	(Assume	input	arguments	are	valid.)	

	

f. isReachable. Write	a	function		

bool	isReachable(BasicGraph&	graph,	Vertex*	v1,	Vertex*	v2)	

that	returns	true	if	a	path	can	be	made	from	the	vertex	v1	to	the	vertex	v2	,	or	false	if	not.	If	the	
two	vertexes	are	the	same,	return	true.	Use	either	BFS	or	DFS,	described	in	the	reference	above.	
Bonus:	do	this	problem	twice	with	both	BFS	and	DFS.	

	

g. isConnected. Write	a	function		

bool	isConnected(BasicGraph&	graph)	

that	returns	true	if	a	path	can	be	made	from	every	vertex	to	any	other	vertex,	or	false	if	there	is	any	
vertex	cannot	be	reached	by	a	path	from	some	other	vertex.	An	empty	graph	is	defined	as	being	
connected.	You	can	use	the	isReachable	function	from	the	previous	problem	to	help	solve	this	
one.	

	

8. findMinimumVertexCover. Write	a	function 	

Set<Vertex*>	findMinimumVertexCover(BasicGraph&	graph)	

that	returns	a	set	of	vertex	pointers	identifying	a	minimum	vertex	cover.	A	vertex	cover	is	a	subset	
of	an	undirected	graph’s	vertexes	such	that	each	and	every	edge	in	the	graph	is	incident	to	at	least	
one	vertex	in	the	subset.	A	minimum	vertex	cover	is	a	vertex	cover	of	the	smallest	possible	size.	
Consider	the	following	graph	on	the	left:	

Each	of	the	four	illustrations	after	it	on	the	right	shows	some	vertex	cover	(shaded	nodes	are	
included	in	the	vertex	cover,	and	hollow	ones	are	excluded).	Each	one	is	a	vertex	cover	because	
each	edge	touches	at	least	one	vertex	in	the	cover.	The	two	vertex	covers	on	the	right	are	minimum	
vertex	covers,	because	there	is	no	smaller	vertex	cover.	

Understand	that	because	the	graph	is	undirected,	that	means	for	every	edge	that	leads	from	some	
vertex	v1	to	v2,	there	will	be	an	edge	that	leads	from	v2	to	v1.	If	there	are	two	or	more	minimum	
vertex	covers,	then	you	can	return	any	one	of	them.	Think	of	this	as	a	backtracking	problem.	The	
implementation	of	this	function	should	consider	every	possible	vertex	subset,	keeping	track	of	the	
smallest	one	that	covers	the	entire	graph.	Try	all	possible	vertex	combinations	using	a	"choose-
explore-unchoose"	pattern	and	keep	track	of	state	along	the	way.

