
CS106X

Autumn 2015 Cynthia Lee

Section 7 (Week 8) – SOLUTION
 Problem and solution authors include Marty Stepp

Problem 1 Solution: Graph Searching

a.	
Graph	1:	directed,	unweighted,	not	connected,	cyclic	
				degrees:	A=(in	0	out	2),	B=(in	2	out	1),	C=(in	1	out	1),	D=(in	2	out	1),	
													E=(in	2	out	2),	F=(in	2	out	1),	G=(in	2	out	1),	H=(in	2	out	1),	
													I=(in	0	out	2)	
Graph	2:	undirected,	unweighted,	connected,	acyclic	
				degrees:	A=1,	B=3,	C=1,	D=2,	E=2,	F=1	
Graph	3:	directed,	unweighted,	not	connected,	cyclic	
				degrees:	A=(in	1	out	2),	B=(in	3	out	1),	C=(in	0	out	1),	
													D=(in	2	out	1),	E=(in	1	out	2)	
Graph	4:	undirected,	weighted,	not	connected,	cyclic	
				degrees:	A=2,	B=2,	C=2,	D=1,	E=1	
Graph	5:	undirected,	unweighted,	connected,	cyclic	
				degrees:	A=3,	B=3,	C=3,	D=3	
Graph	6:	directed,	weighted,	not	connected	(weakly	connected),	cyclic	
				degrees:	A=(in	2	out	2),	B=(in	2	out	3),	C=(in	2	out	3),	D=(in	2	out	0),	
													E=(in	2	out	2),	F=(in	3	out	2),	G=(in	1	out	2)	
	

b. DFS	
Graph	1																												Graph	6	
A	to	B:	{A,	B}																					A	to	B:	{A,	C,	B}	
A	to	C:	{A,	B,	E,	F,	C}												A	to	C:	{A,	C}	
A	to	D:	{A,	B,	E,	D}															A	to	D:	{A,	C,	D}	
A	to	E:	{A,	B,	E}																		A	to	E:	{A,	C,	B,	F,	E}	
A	to	F:	{A,	B,	E,	F}															A	to	F:	{A,	C,	B,	F}	
A	to	G:	{A,	B,	E,	D,	G}												A	to	G:	{A,	C,	G}	
A	to	H:	{A,	B,	E,	D,	G,	H}	
A	to	I:	no	path	
	

c. BFS (shorter paths underlined)	
Graph	1																												Graph	6	
A	to	B:	{A,	B}																					A	to	B:	{A,	C,	B}	
A	to	C:	{A,	B,	E,	F,	C}												A	to	C:	{A,	C}	
A	to	D:	{A,	D}																					A	to	D:	{A,	C,	D}	
A	to	E:	{A,	B,	E}																		A	to	E:	{A,	E}	
A	to	F:	{A,	B,	E,	F}															A	to	F:	{A,	E,	F}	
A	to	G:	{A,	D,	G}																		A	to	G:	{A,	C,	G}	
A	to	H:	{A,	D,	G,	H}	
A	to	I:	no	path	
	

d. minimum weight paths (lower weight paths underlined)	
A	to	B:	{A,	E,	F,	B},	weight=5	
A	to	C:	{A,	E,	F,	B,	C},	weight=6	
A	to	D:	{A,	E,	F,	B,	C,	G,	D},	weight=12	
A	to	E:	{A,	E},	weight=1	
A	to	F:	{A,	E,	F},	weight=3	
A	to	G:	{A,	E,	F,	B,	C,	G},	weight=11	
	

 2

e.		
Set<Vertex*>	kthLevelFriends(BasicGraph&	graph,	Vertex*	v,	int	k)	{	
				Set<Vertex*>	result;	
				Set<Vertex*>	known;	
				kthLevelHelper(graph,	v,	known,	result,	k);	
				return	result;	
}	
	
void	kthLevelHelper(BasiGraph&	graph,	Vertex*	v,	Set<Vertex*>&	known,		
												Set<Vertex*>&	result,	int	k)	{	
				if	(k	==	0)	{	
								result.add(v);	
				}	else	{	
								known	+=	v;	
								for	(Vertex*	friend	:	graph.getNeighbors(v))	{	
												if	(!known.contains(friend))	{	
																kthLevelHelper(graph,	friend,	known,	result,	k	-	1);	
												}	
								}	
				}	
}	

f.	
DFS	solution:	
bool	isReachable(BasicGraph&	graph,	Vertex*	v1,	Vertex*	v2)	{	
				Set<Vertex*>	visited;	
				return	isReachable(graph,	v1,	v2,	visited);	
}	

bool	isReachable(BasicGraph&	graph,	Vertex*	v1,	Vertex*	v2,		
																	Set<Vertex*>	visited)	{	
				if	(v1	==	v2)	{	
								return	true;	
				}	
				visited	+=	v1;	
				foreach	(Edge*	edge	in	graph.getEdgeSet(v1))	{	
								Vertex*	neighbor	=	edge->finish;	
								if	(!visited.contains(neighbor)		
																&&	isReachable(graph,	neighbor,	v2,	visited))	{	
												return	true;	
								}	
				}	
				return	false;	
}	
	
BFS	solution:	
bool	isReachable(BasicGraph&	graph,	Vertex*	v1,	Vertex*	v2)	{	
				Queue<Vertex*>	toExplore;	
				Set<Vertex*>	visited;	
				visited	+=	v1;	
				toExplore.enqueue(v1);	
				while	(!toExplore.isEmpty())	{	
								Vertex*	next	=	toExplore.dequeue();	
								if	(next	==	v2)	{	
												return	true;	
								}	
								for	(Vertex*	neighbor	:	graph.getNeighbors(next))	{	
												if	(!visited.contains(neighbor))	{	
																visited	+=	neighbor;	
																toExplore.enqueue(neighbor)	
												}	
								}	
				}	
				return	false;	
}	

 3

g.	
bool	isConnected(BasicGraph&	graph)	{	
				for	(Vertex*	v1	:	graph.getVertexSet())	{	
								for	(Vertex*	v2	:	graph.getVertexSet())	{	
												if	(v1	!=	v2	&&	!isReachable(graph,	v1,	v2))	{	
																return	false;	
												}	
								}	
				}	
				return	true;	
}	

h.	
Set<Vertex*>	findMinimumVertexCover(BasicGraph&	graph)	{	
				Set<Vertex*>	best	=	graph.getVertexSet();			//	worst	case	solution	
				Set<Vertex*>	chosen;	
				Set<Edge*>	coveredEdges;	
				Vector<Vertex*>	allVertices;	
				for	(Vertex*	v	:	graph.getVertexSet())	{	
								allVertices	+=	v;	
				}	
				coverHelper(graph,	chosen,	coveredEdges,	allVertices,	0,	best);	
				return	best;	
}	
	
void	coverHelper(BasicGraph&	graph,	Set<Vertex*>&	chosen,		
																	Set<Edge*>&	coveredEdges,	Vector<Vertex*>&	allVertices,	
																	int	index,	Set<Vertex*>&	best)	{	
				if	(chosen.size()	>=	best.size())	{	
								//	base	case:	current	cover	too	large	
								return;	
				}	else	if	(coveredEdges.size()	==	graph.getEdgeSet().size())	{	
								//	base	case:	found	a	new	smaller	cover	that	uses	all	edges;	
								//	remember	it	
								best	=	chosen;	
								return;	
				}	else	if	(index	==	graph.getVertexSet().size())	{	
								//	base	case:	exhausted	all	vertices	to	explore	
								return;	
				}	else	{	
								//	recursive	case:	explore	whether	or	not	to	include	the	current	vertex	
								//	(the	one	at	index)	in	the	current	vertex	cover	
	
								//	choose	not	to	include	this	vertex;	explore	
								coverHelper(graph,	chosen,	coveredEdges,	allVertices,	index	+	1,	best);	
	
								//	choose	to	include	this	vertex;	explore	
								chosen	+=	allVertices[index];	
	
								//	remember	which	new	edges	are	added	here	(so	that	we	can	un-choose	later)	
								Set<Edge*>	newEdges;	
								for	(Edge*	e	in	graph.getEdgeSet(allVertices[index]))	{	
												if	(!coveredEdges.contains(e))	{	
																//	must	add	this	edge	and	its	inverse	(A	->	B	and	B	->	A)	
																Edge*	inverse	=	graph.getEdge(e->finish,	e->start);	
																newEdges	+=	e,	inverse;	
																coveredEdges	+=	e,	inverse;	
												}	
								}	
								coverHelper(graph,	chosen,	coveredEdges,	allVertices,	index	+	1,	best);	
	
								//	unchoose	
								chosen	-=	allVertices[index];	
								coveredEdges	-=	newEdges;	
				}	
}	

