CS106X
Autumn 2015 Cynthia Lee

Section 7 (Week 8) — SOLUTION

Problem and solution authors include Marty Stepp

Problem 1 Solution: Graph Searching

a.
Graph 1: directed, unweighted, not connected, cyclic
degrees: A=(in © out 2), B=(in 2 out 1), C=(in 1 out 1), D=(in 2 out 1),
E=(in 2 out 2), F=(in 2 out 1), G=(in 2 out 1), H=(in 2 out 1),
I=(in @ out 2)
Graph 2: undirected, unweighted, connected, acyclic
degrees: A=1, B=3, C=1, D=2, E=2, F=1
Graph 3: directed, unweighted, not connected, cyclic
degrees: A=(in 1 out 2), B=(in 3 out 1), C=(in @ out 1),
D=(in 2 out 1), E=(in 1 out 2)
Graph 4: undirected, weighted, not connected, cyclic
degrees: A=2, B=2, C=2, D=1, E=1
Graph 5: undirected, unweighted, connected, cyclic
degrees: A=3, B=3, C=3, D=3
Graph 6: directed, weighted, not connected (weakly connected), cyclic
degrees: A=(in 2 out 2), B=(in 2 out 3), C=(in 2 out 3), D=(in 2 out 0),
E=(in 2 out 2), F=(in 3 out 2), G=(in 1 out 2)

b. DFS
Graph 1 Graph 6
A to B: {A, B} A to B: {A, C, B}
A to C: {A, B, E, F, C} A to C: {A, C}
A to D: {A, B, E, D} A to D: {A, C, D}
A to E: {A, B, E} A to E: {A, C, B, F, E}
A to F: {A, B, E, F} A to F: {A, C, B, F}
A to G: {A, B, E, D, G} A to G: {A, C, G}
A to H: {A, B, E, D, G, H}
A to I: no path
c. BFS (shorter paths underlined)
Graph 1 Graph 6

A to B: {A, B} A to B: {A, C, B}
Ato C: {A, B, E, F, C} A to C: {A, C}
A to D: {A, D} A to D: {A, C, D}
A to E: {A, B, E} A to E: E
A to F: {A, B, E, F} A to F: {A, E, F
A to G: {A, D, G} A to G: {A, C, G}
A to H: {A, D, G, H}
A to I: no path
d. minimum welght paths (lower weight paths underlined)
A to B: {A, E, F, B}, weight=5
A to C: {A, E, F, B, C}, weight=6
A toD: {A, E, F, B, C, G, D}, weight=12
A to E: {A, E}, weight=1
A to F: {A, E, F}, weight=3
A to G: {A, E, F, B, C, G}, weight=11




e.
Set<Vertex*> kthLevelFriends(BasicGraph& graph, Vertex* v, int k) {
Set<Vertex*> result;
Set<Vertex*> known;
kthLevelHelper(graph, v, known, result, k);
return result;

void kthLevelHelper(BasiGraph& graph, Vertex* v, Set<Vertex*>& known,
Set<Vertex*>& result, int k) {

if (k == 0) {
result.add(v);
} else {

known += v;
for (Vertex* friend : graph.getNeighbors(v)) {
if (!known.contains(friend))
kthLevelHelper(graph, friend, known, result, k - 1);

}
}
}
}
f.
DFS solution:

bool isReachable(BasicGraph& graph, Vertex* vl1, Vertex* v2) {
Set<Vertex*> visited;
return isReachable(graph, v1, v2, visited);

bool isReachable(BasicGraph& graph, Vertex* vil, Vertex* v2,
Set<Vertex*> visited) {
if (vl == v2) {
return true;

visited += vi;
foreach (Edge* edge in graph.%etEdgeSet(vl)) {
Vertex* neighbor = edge->finish;
if (!visited.contains%neighbor)
&& isReachable(graph, neighbor, v2, visited)) {
return true;

return false;

BFS solution:
bool isReachable(BasicGraph& graph, Vertex* vi, Vertex* v2) {
Queue<Vertex*> toExplore;
Set«Vertex*> visited;
visited += vi1;
toExplore.enqueue(vl);
while (!toExplore.isEmpty()) {
Vertex* next = toExplore.dequeue();
if (next == v2) {
return true;

}
for (Vertex* neighbor : graph.getNeighbors(next)) {
if (!visited.contains(neighbor))
visited += neighbor;
toExplore.enqueue(neighbor)

}

return false;



g.
bool isConnected(BasicGraph& graph) {

h

for (Vertex* vl : graph.getVertexSet())
for (Vertex* v2 : graph.getVertexSet()) {
if (vl != v2 && !isReachable(graph, vi1, v2)) {
return false;

}

return true;

Set<Vertex*> findMinimumVertexCover(BasicGraph& graph) {

}

Set<Vertex*> best = graph.getVertexSet(); // worst case solution
Set<Vertex*> chosen;
Set<Edge*> coveredEdges;
Vector<Vertex*> allVertices;
for (Vertex* v : graph.getVertexSet()) {
allVertices += v;

coverHelper(graph, chosen, coveredEdges, allVertices, 0, best);
return best;

void coverHelper(BasicGraph& graph, Set<Vertex*>& chosen,

Set<Edge*>& coveredEdges, Vector<Vertex*>& allVertices,
int index, Set<Vertex*>& best) {
if (chosen.size() >= best.size()) {
// base case: current cover too large
return;
} else if (coveredEdges.size() == graph.getEdgeSet().size()) {
// base case: found a new smal%er cover tﬁat uses all edges;
// remember it
beit = chosen;
return;
} else if zindex == graph.getVertexSet().size()) {
// base case: exhausted all vertices to explore
return;
} else { ’
// recursive case: explore whether or not to include the current vertex
// (the one at index) in the current vertex cover

// choose not to include this vertex; explore
coverHelper(graph, chosen, coveredEdges, allVertices, index + 1, best);

// choose to include this vertex; explore
chosen += allVertices[index];

// remember which new edges are added here (so that we can un-choose later)
Set<Edge*> newEdges;
for (Edge* e in graph.getEdgeSet(allVertices[index])) {
if (!coveredEdges.contains(e)) {

// must add this edge and its inverse (A -> B and B -> A)

Edge* inverse = graph.getEdge(e->finish, e->start);

newEdges += e, inverse;

coveredEdges += e, inverse;

coverHelper(graph, chosen, coveredEdges, allVertices, index + 1, best);
// unchoose

chosen -= allVertices[index];
coveredEdges -= newEdges;



