CS106X
Autumn 2015 Cynthia Lee

Section 8 (Week 9) - SOLUTION

Problem and solution authors include Jerry Cain and Aubrey Gress.

Problem 1 Solution: Muppet Inheritance

The Kermit * can address either aWaldorf object or a Gonzo object. Each provides implementations
of all of the methods—abstract or not—at the Kermit level. The Kermit class clearly has two abstract
methods, and the Statler class doesn’t provide an implementation for the animal method, so it’s also
an abstract class.

Output for Waldorf * Output for Gonzo *
Kermit::fozzie Kermit::fozzie
Kermit::rowlf Kermit: :rowlf
Statler::misspiggy Gonzo::misspiggy
Statler::rowlf Kermit: :beaker
Waldorf::animal Gonzo::animal
Waldorf: :rowlf Gonzo: :rowlf

Problem 2 Solution: Using Polymorphism with JavaScript Object Notation

class JSONElement {
public:
virtual ~JSONElement() {};
virtual string toString() = ©;
private:

}s

class JSONString : public JSONElement {
public:
JSONString(const string& str) { value = str; }
~JSONString() {}
string toString() { return value; };
private:
string value;

}s

class JSONInt : public JSONElement {
public:

JSONInt(int i) { value = i; }

~JSONInt () {}

string toString() { return integerToString(value); };
private:

int value;

}s

class JSONBoolean : public JSONElement {
public:
JSONBoolean(bool b) {value = b;}
~JSONBoolean () {}



string toString() { return value ? "true" : "false"; };
private:
bool value;

};

class JSONArray: public JSONElement {
public:
JSONArray(const Vector<JSONElement*>& arr) { value = arr; }
~JSONArray () {
for (int i = @; i < value.size(); i++)
delete value[i];

}
string toString() {
string str = "[";
for (int i = @; i < value.size(); i++) {
str += value[i]->toString();
if (i != value.size() - 1) {
str += ", ";
}
}
str += "1";
return str;
}s
private:
Vector<JSONElement *> value;
s
class JSONDictionary: public JSONElement {
public:

JSONDictionary(const Map<string, JSONElement *>& dictionary) {
value = dictionary;
}
~JSONDictionary () {
foreach(string key in value)
delete value[key];

}

string toString() {
string str = "{";
int counter = 9;
foreach (const string& key in value) {
string keyToPrint = key;
str += keyToPrint;
str += " "

. ]
str += value[key]->toString();
if (counter != value.size() - 1) {
str += ", ";
}
counter++;
}
str += "}";

return str;

}s

private:



Map<string, JSONElement *> value;
}s

JSONElement *parseJSON(TokenScanner& scanner);

Vector<JSONElement *> parselSONArray(TokenScanner& scanner) {
Vector<JSONElement *> array;
bool firstElementConsumed = false;
while (true) {
string lookahead = scanner.nextToken();
if (lookahead == "]") return array;
if (firstElementConsumed && lookahead != ",") {
error("Oops! Commas need to separate elements in a JSON array.");
} else if (!firstElementConsumed) {
scanner.saveToken(lookahead);

}

JSONElement *element
firstElementConsumed
array.add(element);

parseJSON(scanner);
true;

}

Map<string, JSONElement *> parseJSONDictionary(TokenScanner& scanner) {
Map<string, JSONElement *> dictionary;
bool firstEntryConsumed = false;
while (true) {
string lookahead = scanner.nextToken();
if (lookahead == "}") return dictionary;
if (firstEntryConsumed && lookahead != ",") {
error("Oops! Commas need to separate entries in a JSON dictionary.");
} else if (!firstEntryConsumed) {
scanner.saveToken(lookahead);

}

string key = scanner.nextToken();
if (scanner.nextToken() != ":") {
error("Expected a colon to separate the key and value pair.");

}

JSONElement *value = parselSON(scanner);
firstEntryConsumed = true;
dictionary[key] = value;

}

JSONElement *parsel]SON(TokenScanner& scanner) {
string lookahead = scanner.nextToken();
if (lookahead.empty()) return NULL;
if (isdigit(lookahead[0])) {
return new JSONInt(stringToInteger(lookahead));

} else if (lookahead == "true" || lookahead == "false" ) {
return new JSONBoolean(lookahead == "true");
} else if (lookahead[@] == """) {

return new JSONString(lookahead);



} else if (lookahead[@] == "[") {
return new JSONArray(parseJSONArray(scanner));

} else if (lookahead[@] == "{') {
return new JSONDictionary(parseJSONDictionary(scanner));
} else {

error("JSON element type passed to parseJSON not yet supported.”);

}
return NULL;



