
CS106X

Autumn 2015 Cynthia Lee

Section 8 (Week 9) – SOLUTION
 Problem and solution authors include Jerry Cain and Aubrey Gress.

Problem 1 Solution: Muppet Inheritance

The Kermit * can address either a Waldorf object or a Gonzo object. Each provides implementations
of all of the methods—abstract or not—at the Kermit level. The Kermit class clearly has two abstract
methods, and the Statler class doesn’t provide an implementation for the animal method, so it’s also
an abstract class.

Output for Waldorf *
Kermit::fozzie
Kermit::rowlf
Statler::misspiggy
Statler::rowlf
Waldorf::animal
Waldorf::rowlf

Problem 2 Solution: Using Polymorphism with JavaScript Object Notation
class JSONElement {
public:
 virtual ~JSONElement() {};
 virtual string toString() = 0;
private:
};

class JSONString : public JSONElement {
public:
 JSONString(const string& str) { value = str; }
 ~JSONString() {}
 string toString() { return value; };
private:
 string value;
};

class JSONInt : public JSONElement {
public:
 JSONInt(int i) { value = i; }
 ~JSONInt () {}
 string toString() { return integerToString(value); };
private:
 int value;
};

class JSONBoolean : public JSONElement {
public:
 JSONBoolean(bool b) {value = b;}
 ~JSONBoolean () {}

Output for Gonzo *
Kermit::fozzie
Kermit::rowlf
Gonzo::misspiggy
Kermit::beaker
Gonzo::animal
Gonzo::rowlf

 2

 string toString() { return value ? "true" : "false"; };
private:
 bool value;
};

class JSONArray: public JSONElement {
public:
 JSONArray(const Vector<JSONElement*>& arr) { value = arr; }
 ~JSONArray () {
 for (int i = 0; i < value.size(); i++)
 delete value[i];
 }
 string toString() {
 string str = "[";
 for (int i = 0; i < value.size(); i++) {
 str += value[i]->toString();
 if (i != value.size() - 1) {
 str += ", ";
 }
 }
 str += "]";
 return str;
 };
private:
 Vector<JSONElement *> value;
};

class JSONDictionary: public JSONElement {
public:
 JSONDictionary(const Map<string, JSONElement *>& dictionary) {
 value = dictionary;
 }
 ~JSONDictionary () {
 foreach(string key in value)
 delete value[key];
 }

 string toString() {
 string str = "{";
 int counter = 0;
 foreach (const string& key in value) {
 string keyToPrint = key;
 str += keyToPrint;
 str += " : ";
 str += value[key]->toString();
 if (counter != value.size() - 1) {
 str += ", ";
 }
 counter++;
 }
 str += "}";
 return str;
 };

private:

 3

 Map<string, JSONElement *> value;
};

JSONElement *parseJSON(TokenScanner& scanner);

Vector<JSONElement *> parseJSONArray(TokenScanner& scanner) {
 Vector<JSONElement *> array;
 bool firstElementConsumed = false;
 while (true) {
 string lookahead = scanner.nextToken();
 if (lookahead == "]") return array;
 if (firstElementConsumed && lookahead != ",") {
 error("Oops! Commas need to separate elements in a JSON array.");
 } else if (!firstElementConsumed) {
 scanner.saveToken(lookahead);
 }

 JSONElement *element = parseJSON(scanner);
 firstElementConsumed = true;
 array.add(element);
 }
}

Map<string, JSONElement *> parseJSONDictionary(TokenScanner& scanner) {
 Map<string, JSONElement *> dictionary;
 bool firstEntryConsumed = false;
 while (true) {
 string lookahead = scanner.nextToken();
 if (lookahead == "}") return dictionary;
 if (firstEntryConsumed && lookahead != ",") {
 error("Oops! Commas need to separate entries in a JSON dictionary.");
 } else if (!firstEntryConsumed) {
 scanner.saveToken(lookahead);
 }

 string key = scanner.nextToken();
 if (scanner.nextToken() != ":") {
 error("Expected a colon to separate the key and value pair.");
 }

 JSONElement *value = parseJSON(scanner);
 firstEntryConsumed = true;
 dictionary[key] = value;
 }
}

JSONElement *parseJSON(TokenScanner& scanner) {
 string lookahead = scanner.nextToken();
 if (lookahead.empty()) return NULL;
 if (isdigit(lookahead[0])) {
 return new JSONInt(stringToInteger(lookahead));
 } else if (lookahead == "true" || lookahead == "false") {
 return new JSONBoolean(lookahead == "true");
 } else if (lookahead[0] == '"') {
 return new JSONString(lookahead);

 4

 } else if (lookahead[0] == '[') {
 return new JSONArray(parseJSONArray(scanner));
 } else if (lookahead[0] == '{') {
 return new JSONDictionary(parseJSONDictionary(scanner));
 } else {
 error("JSON element type passed to parseJSON not yet supported.");
 }
 return NULL;
}

