
CS106X

Autumn 2015 Cynthia Lee

Section 9 (Week 10)
 Topics list adapted from one by Marty Stepp.

There are no section problems this week. The section handout is a list of topics to study. Your section
leader will answer your questions about topics for the final exam.

Midterm exam topics study list (fair game for final exam but less emphasis):

 C++ basics: strings, streams (file I/O), functions; passing by value and by reference
 Using ADTs: the collections from the Stanford C++ library, such as Vector, Grid, Stack,

Queue, Set, Map, HashSet, HashMap, or Lexicon; understanding tradeoffs between various
data structures

 Implementing ADTs: write code to implement operation(s) inside a basic ADT such as a list,
stack, queue, etc., using standard implementation models (e.g., dynamic array, linked list, etc;
depending on ADT)

 Pointers/arrays: write lines of code that use pointers and arrays, and/or look at a piece of
pointer code and answer questions about it. Read and write code using operators *, &, new, and
delete, as well as pointer arithmetic (adding/subtracting from pointers)

 Linked lists: write a few lines of code to change a "before" picture of some linked nodes into
an "after" picture, and/or write functions that operate on a linked list

 Algorithm analysis / Big-O: look at a given piece of code and answer questions about its
runtime complexity, and/or write a piece of code that solves a problem within a given Big-O
limit

 Recursion: look at a piece of recursive code and write its output, and/or write a function that
uses recursion to solve a problem

 Backtracking: write a function that uses recursive backtracking to solve a problem
 Classes and objects: write a class and/or add behavior/data to an existing C++ class;

understanding public vs. private, const, constructors, operator overloading

Final exam topics study list:

 Midterm topics: see above.
 Recursion and/or recursive backtracking in trees and graphs: in addition to recursion as

used on the midterm, read and write recursive code that operates on or explores trees and
graphs

 Trees: simulate operations on a binary search tree (BST) such as adding or removing elements;
perform various flavors of traversals on trees; tries as backing for Lexicon

 Implementing data structures: simulate operations on a data structure we implemented or
discussed the implementation of in lecture, such as a map (BST or hashing), priority queue
(heap or various from the assignment), stack, queue, vector; and/or, add behavior to an
existing implementation

 Searching: trace the behavior of binary search, understand how searching is done in various
data structures (array, tree, list, sorted and unsorted)

 2

 Sorting: selection sort, insertion sort, merge sort, heap sort, quicksort (see practice exams for
typical level of detail of study—note we did all of these in one day, and exam emphasis will
reflect that)

 Graphs: write code to operate on graphs, which might include needing to know graph
vocabulary such as connectedness, cycles, degree of vertices; simulate the execution of path-
searching algorithms such as DFS, BFS, Dijkstra's algorithm, A*; simulating execution of
Kruskal's algorithm; write code that operates on a graph (typically some basic traversal such as
DFS/BFS, with customizations for the particular problem)

 Inheritance, polymorphism, object-oriented programming: look at a piece of code
involving inheritance and interpret its output; and/or, write a class that uses inheritance to
extend some existing base class

The following topics are guaranteed NOT to be required to solve any problem on the final exam:

o drawing fractals; graphics with the GWindow class
o multiple inheritance; private inheritance; initialization list in constructors in subclass
o overloading the = operator, copy constructors, and deep copying
o the Standard Template Library (STL)
o writing C++ template classes
o details of how to perform rotations on an AVL tree to restore its balance
o other kinds of advanced trees such as AVL, Red/Black, Splay
o anything else not explicitly covered in lecture or homework

