CS 106X Sample Final Exam #2

This sample excam is intended to demonstrate an example of some of the kinds of problems that will be asked on the actnal final exam. We do not
guarantee that the number of questions in this sample exam will match the number on the real exam, nor that every kind of problem shown here
will exactly match the kinds of problems shown on the final exam, though the real exam will be generally similar overall. Also, to save paper, this
exan does not provide blank pages for writing space. The real exanm will provide more blank space for you to write your answers.

1. Array List Implementation (write)

In lecture, we discussed the implementation of a class called ArrayIntList, an implementation of a list of integers using
an internal array. It was our own Vector of ints. Add a member function to this class called stretch that accepts an
integer £ as a parameter and that replaces each integer in the original list with £ copies of that integer. For example, if an
ArrayIntList variable called 1ist stores this sequence of values:

{18, 7, 4, 4, 24, 11}
And the client makes the following call of list.stretch(3); , the list should be modified to store the following values.
Notice that there are three copies of each value from the original list because 3 was passed as the parameter value.

{18, 18, 18, 7, 7, 7, 4, 4, 4, 4, 4, 4, 24, 24, 24, 11, 11, 11}
If the value of £ is less than or equal to 0, the list should be empty after the call.

Remember that an array list has an internal "unfilled" array whose capacity might be larger than its size. Note that this
member function might require more capacity than your list's array currently has. If so, you must handle this by resizing
to a larger array if necessary. You should not create any auxiliary arrays unless it is absolutely necessary to do so to solve
the problem. If the list's existing internal array already has enough capacity, you should petform the modification in place
without using any auxiliary data structures.

Constraints: For full credit, obey the following restrictions in your solution. A violating solution can get partial credit.

e Do not call any member functions of the ArrayIntList. e.g. Do not call add, insert, remove, or size.
You may, of course, refer to the private member variables inside the list.
® You should not create any auxiliary arrays unless it is absolutely necessary to do so to solve the problem.
For example, if the list's existing internal array already has enough capacity to fit the stretched items, do not create
any second array; perform the modifications entirely in place.
® You may create a single auxiliary array if necessary to store the elements in the list (see previons bulle?).
Outside of this, do not use any other auxiliary data structures such as vectors, queues, maps, sets, strings, etc.
e Do not leak memory; if you cease using any dynamically allocated (via new) memory, free it.
e Your code must run in no worse than O(V) time, where N is the length of the list.

You should write the member function's body as it would appeat in ArrayIntList.cpp. You do not need to write the
function's header as it would appear in ArrayIntList.h. Write only your member function, not the rest of the class.

1of 9

2. Linked Lists (read)

Consider the following linked list of ListNode objects, with a pointer named front that points to the first node:

front -> [1] -> [2] -> [4] -> [3] -> [5] -> [7] -> [11] -> [e] -> [6] -> [1] -> [1] /

Draw the state of the linked list after the following code runs on it. If a given node is removed from the list, you don't
need to draw that node, only the ones that remain reachable in the original list.

void linkedListMystery2(ListNode*& front) {
ListNode* curr = front;
ListNode* prev = nullptr;
while (curr->next != nullptr) {
if (curr->data % 2 == @ && prev != nullptr) {
prev->next = curr->next;
} else {
curr->data--;

prev = curr;
curr = curr->next;

20f9

3. Linked Lists (write)

Write a function combineDuplicates that manipulates a list of ListNode structures class from lecture and section (see
reference sheet). The function modifies the list by merging any consecutive neighboring nodes that contain the same element
value into a single node whose value is the sum of the merged neighbors. For example, suppose a pointer named 1ist
points to the front of a list containing the following values. Below is the result of a call of combineDuplicates(list);

on the list. The underlined areas represent the neighboring duplicate elements that are merged in the final result.

{3, 3, 2, 4, 4, 4, -1, -1, 4, 12, 12, 12, 12, 48, -5, -5} list

{3, 3,2, 4,4, 4, -1, -1, 4, 12, 12, 12, 12, 48, -5, -5}

{Q: 2) Q: 2: 4) @: 48: ﬂ} result

If the list is empty or contains no duplicates, it should be unchanged by a call to your function.

Constraints: For full credit, obey the following restrictions in your solution. A violating solution can get partial credit.

It is okay to modify the data field of existing nodes, if you like.

You may not create any new nodes by calling new ListNode(...).
You may create as many ListNode* pointers as you like, though.

Do not use any auxiliary data structures such as arrays, vectors, queues, maps, sets, strings, etc.
Do not leak memory; if you remove nodes from the list, free their associated memory.
Your code must run in no worse than O(NV) time, where N is the length of the list.

Your code must solve the problem by making only a single traversal over the list, not multiple passes.

combineDuplicates(list);

30f9

4. Binary Search Trees (read) ABCDEFGHIJKLMNOPQRSTUVIWXYZ

(a) Write the binary search tree that would result if these elements were added to an empty binary search tree (a simple
BST, not a re-balancing AVL tree) in this order. (See alphabet guide at top-right if needed.)

e Cersei, Arya, Jamie, Littlefinger, Danaerys, Tyrion, Ned, Stannis, Varys, Ramsay, Bran, Hodor

(b) Examine your tree from (a) and answer the following questions about it.
e Is the overall tree balanced? Circle one. Yes No

e If the tree is balanced, briefly explain how you know this by writing your written justification next to the tree.
If the tree is not balanced, circle and/or cleatly mark all node(s) that are unbalanced.

(c) Now draw below what would happen to your tree from the end of (a) if all of the following values were removed,
in this order (using the BST remove algorithm shown in lecture):

e Littlefinger, Cersei, Jamie

40f 9

5. Binary Trees (write)

Write a member function hasPath that interacts with a tree of TreeNode structures as seen in class from lecture, repre-
senting an unordered binary tree (see reference sheet).

The function accepts integers start and end as parameters and returns true if a path can be found in the tree from szars
down to end. In other words, both sfart and end must be element data values that are found in the tree, and end must be be-
low start, in one of starfs subtrees; otherwise the function returns false. If sfart and end are the same, you are simply
checking whether a node exists in the tree with that data value. If the tree is empty, your function should return false.

For example, suppose a TreeNode pointer named tree points to the root of a tree storing the following elements. The
table below shows the results of several various calls to your function:

67
/ \
80 52
/ \ /
16 21 99
/
45
Call Result Reason

hasPath(tree, 67, 99) true path exists: 67 = 52 = 99
hasPath(tree, 80, 45) true path exists: 80 — 21 — 45
hasPath(tree, 52, 99) true path exists: 52 = 99
hasPath(tree, 67, 45) true path exists: 67 = 80 = 21 = 45
hasPath(tree, 16, 16) true node exists with data of 16
hasPath(tree, 99, 67) false nodes do exist, but in wrong order
hasPath(tree, 80, 99) false nodes do exist, but there is no path from 80 to 99
hasPath(tree, 67, 100) false end of 100 doesn't exist in the tree
hasPath(tree, -1, 45) false start of -1 doesn't exist in the tree
hasPath(tree, 42, 64) false start/end of -1 and 45 both don't exist in the tree

Your function should not modify the tree's state.

For full credit, your solution should be efficient. Specifically, you should not traverse over the same nodes or subtrees
multiple times. You also should not explore regions of the tree if you do not need to. For example, if you find a path be-
tween start and end, your algorithm should stop without exploring the rest of the tree.

Constraints: For full credit, obey the following constraints in your solution. A violating solution can get partial credit.
* Do not modify the tree's state in any way.
For example, do not change the data field of any existing nodes of the tree, nor its left or right pointers.
* Do not leak memory. If you remove a node from the tree, free its memory.
* Do not create any data structures (arrays, vectors, sets, maps, etc.).
* Do not construct new node objects or modify the tree in your code. You can declare pointers if you like.

* For full credit, your solution should be at worst O(IN) time, where N is the number of elements in the tree.
You must also solve the problem using a single pass over the tree, not multiple passes.

* You may define private helper functions if you like.

* Your solution must be recutsive.

50f9

6. Graphs (write)

Write a function named findLongestPath that accepts as a parameter a reference to a BasicGraph, and returns a
Vector of Vertex pointers representing the longest possible "simple" path between any two vertexes in that graph. A

simple path is a non-cycle path that does not repeat any vertexes. Your algorithm does not consider edge weight/cost,
only path length.

The diagram below shows an example graph that might be passed to your algorithm. In the following graph, the longest
possible simple path is D -> G -> H -> F -> A -> B -> C, which has length 7. So when passed the graph below, your
function would return a Vector containing pointers to those vertexes in that order. If there is a tie and there are multiple
longest paths of exactly the same length, your function can return any one of those equally longest paths.

For homework you learned and wrote several algorithms for efficiently finding shortest paths and minimum-weight paths.
It turns out that the task of finding Jongest paths, like you're doing in this problem, doesn't have a known clever algorithm.
You need to literally try generating all possible simple paths in the graph and discover which one is the longest through
brute force. So you should come up with an algorithm that can enumerate every valid simple path in the graph and find

the longest such one. Note that the graph might be cyclic, as in the graph above that contains cycles such as A -> D -> G
>H->F->A.

Although you must try every possible path, you should still write code that is efficient. If you explore large numbers of
paths and possibilities multiple times, or continue exploring paths that are certain to be dead-ends, you may lose points.

You may assume that the graph's state is valid, and that it is directed and unweighted, and that it contains no self-edges
(e.g. from 177 to 177). You may also assume that there is at most one directed edge from any vertex 1”7 to any other
vertex 2. You may define private helper functions if so desired, and you may construct auxiliary collections as needed
to solve this problem. You should not modify the contents of the graph such as by adding or removing vertexes or edges

from the graph, though you may modify the state variables inside individual vertexes/edges such as visited, cost, and
color.

If the graph does not contain any vertexes and/ot edges, your method should return an empty Vector.

60f9

7. Hashing (read)

Simulate the behavior of a hash map of integers as described and implemented in lecture. Assume the following:

e the hash table array has an initial capacity of 10

e the hash table uses separate chaining to resolve collisions

e the hash function returns the absolute value of the integer key, mod the capacity of the hash table

e rehashing occurs at the end of an add where the load factor is > 0.5 and doubles the capacity of the hash table

Draw an array diagram to show the final state of the hash table after the following operations are performed. Leave a box
empty if an array element is unused. Also write the size, capacity, and load factor of the final hash table. You do not have
to redraw an entirely new hash table after each element is added or removed, but since the final answer depends on every
add/remove being done correctly, you may wish to redraw the table at various important stages to help earn partial credit
in case of an error. If you draw various partial or in-progress diagrams or work, please circle your final answer.

HashMap map;
map.put(19, 9);
map.put(4, 4);
map.put(44, 19);
map.remove(9);
map.put(23, 54g;
map.put(73, 54
map.put(83, 9;;
map.put(99, 4
map.remove(4;;
map.putée, 9);
map.put(-2, -88);
if (!map.containsKey(73)) {
map.put(66, 77);

J

B

map.put(333, 9);

70f9

8. Inheritance and Polymorphism (read)

Consider the following classes; assume

that each is defined in its own file.

class Golbez : public Cecil {
public:
virtual void m2()

cout << "Golbez m2" << endl;

mi();
}
}s

class Rosa : public Cecil {
public:
virtual void m3() {
cout << "Rosa m3" << endl;

m2();

virtual void m4() {
cout << "Rosa m4" << endl;
}
}s

class Cecil : public Kain {
public:
virtual void mi() {
cout << "Cecil ml" << endl;
Kain::ml();

virtual void m3() {
cout << "Cecil m3" << endl;
m2();

}
s

class Kain {
public:
virtual void mi() {
cout << "Kain ml" << endl;

}

virtual void m2() {

mi();)
cout << "Kain m2" << endl;

}
s

Now assume that the following variables are defined:

Kain* varl
Cecil* var2
Kain* wvar3
Cecil* var4

new Cecil();
new Rosa();

new Golbez();
new Golbez();

In the table below, indicate in the right-hand column the output produced
by the statement in the left-hand column. If the statement produces
more than one line of output, indicate the line breaks with slashes as in
"x /y / 2" to indicate three lines of output with "x" followed by "y"
followed by "z".

If the statement does not compile, write "compiler error". If a
statement would crash at runtime or cause other unpredictable behavior,
write "crash".

Statement Output

varl->mi();

varl->m2();

varl->m3();

var2->m3();

var3->m2();

var3->m4():

vard->m3();

((Cecil*) varl)->m3();

((Rosa*) varl)->ma();

((Rosa*) var2)->ma();

((Golbez*) var3)->ma();

80of 9

8. Object-Oriented Programming and Inheritance (write)

You have been asked to extend a pre-existing class named Calculator that performs various calculations on integers.
The Calculator class includes the following members:

Member Description

private: private data of the calculator; its random number seed

int m_seed;
Calculator(int seed) constructs a Calculator with the given seed for random numbers
virtual int fib(int k) returns the Ath Fibonacci number (assumes £ 2 1)
virtual int getSeed() const returns the random number seed passed to the constructor
virtual bool isPrime(int n) returns true if zis a prime number
virtual int kthPrime(int k) returns the £th prime number (assumes £ = 1)
virtual int rand(int max) returns a random value between 0 and max, inclusive
virtual string toString() const returns a string representation of the calculator

The class correctly computes its results, but it does so inefficiently. In particular, it often computes the same prime num -
bers more than once. Suppose that the call of kthPrime(30) is made 100 times by client code; there is no reason to
compute that same value 100 different times. Instead the calculator could compute it once and store its value, so that the
99 calls after the first simply return the "remembered” value. This idea is called "memoizing”.

You are to define a new class called MemoryCalculator that extends Calculator through inheritance. A Memo-
ryCalculator should behave like a Calculator except that it implements "memoizing" to speed up the computation of
primes. Your memo calculator should guarantee that the value of kthPrime(k) is computed only once for any given
value £. Your class should still rely on the Calculator class to compute prime numbers when necessary. You are simply
guaranteeing that the computation is not performed more than once for any particular value of 4. You should not make
any assumptions about how large & might be or about the order in which the function is called with different values of 4.
The isPrime member function calls kthPrime, so it does not need to be memoized. You also do not need to memoize
the Fibonacci (fib) computation for this problem.

You should provide the same member functions as the superclass, extended/overridden as necessaty to modify their be-
havior as previously described. You should also provide the following new public members that will allow a client to find
out how many values have been directly computed versus how many calls have been handled through memoization:

Member Description
MemoryCalculator(int seed) constructs a MemoCalculator with the given seed for
generating random numbers
virtual int getComputeCount () returns the number of prime numbers that were actually
computed by a call to the superclass's kthPrime method
virtual int getMemoCount() returns number of previous calls that were handled through
memoization (rather than actually computing the value)

You must also write operators == and != for comparing MemoryCalculator objects for equality. Two MemoCalcu-
lators are equal if they have exactly the same state, including their random number seed, compute count, memo count,
and exactly what numbers (if any) have been memoized. If any of the state differs, the two objects are considered to be
unequal.

Write the .h and .cpp parts of the class separately with a line to separate them. The majority of your score comes from
implementing the correct behavior. You should also appropriately utilize the behavior you have inherited from the super-
class and not re-implement behavior that already works properly in the superclass.

Copyright © Stanford University and Marty Stepp. Licensed under Creative Commons Attribution 2.5 License. All rights reserved.

90f9

