Programming Abstractions (Accelerated)
Winter 2017

Stanford University

Computer Science Department

THE LIFE CHANGING MAGIC OF

DIJKSTRA AND A®

Friday, March 10, 2017
Reading: Programming Abstractions in C++, Chapter 18.6

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

TODAY'S TOPICS - MORE GRAPHS!

» Reviewing DFS and BFS

» Comparing DFS and BFS

» Making weighty decisions using Dijkstra's algorithm
» Looking into the future with A*

» Google Maps

REVIEWING DFS
AND BFS

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

DEPTH FIRST SEARCH

» Find a path from A to B using
iterative depth first search

» (Assume that nodes are pushed
onto the stack in alphabetic
order)

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

DEPTH FIRST SEARCH (ITERATIVE PSEUDOCODE)

> create a path with just start node and
push onto stack s

> while s is not empty
> p = s.pop()
» v =last node of p
» if vis end, you're done
> mark v as visited

» for each unvisited neighbor:

» create new path and append
neighbor

» push new path onto s

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

DEPTH FIRST SEARCH

» Find a path from A to B using
iterative depth first search

» (Assume that nodes are pushed
onto the stack in alphabetic
order)

» AE=>F->D->B

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

DEPTH FIRST SEARCH

» Find a path from A to B using
iterative depth first search

» (Assume that nodes are pushed
onto the stack in alphabetic
order)

» AE=>F->D->B

» Is this the shortest path?

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

DEPTH FIRST SEARCH

Paths to Consider (Stack)

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

DEPTH FIRST SEARCH

Paths to Consider (Stack)

Current Path

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

DEPTH FIRST SEARCH

Paths to Consider (Stack)

Current Path

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

DEPTH FIRST SEARCH

Paths to Consider (Stack)

Current Path

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

DEPTH FIRST SEARCH

Paths to Consider (Stack)

Current Path

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

DEPTH FIRST SEARCH

Paths to Consider (Stack)

Current Path

03

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

DEPTH FIRST SEARCH

Paths to Consider (Stack)

Current Path

03

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

DEPTH FIRST SEARCH

Paths to Consider (Stack)

Current Path

L

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

BREADTH FIRST SEARCH

» Find a path from A to B using
breadth first search

» (Assume that nodes are pushed
onto the queue in alphabetic
order)

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

BREADTH FIRST SEARCH (PSEUDOCODE)

> create a path with just start node
and enqueue into queue q

» while g is not empty
» p = g.dequeue()
» v =last node of p
» if vis end, you're done
» mark v as visited

» for each unvisited neighbor:

» create new path and append
neighbor

> enqueue new path into q

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

BREADTH FIRST SEARCH

» Find a path from A to F using
breadth first search

» (Assume that nodes are pushed
onto the queue in alphabetic
order)

» A>C->B

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

BREADTH FIRST SEARCH

» Find a path from A to F using
breadth first search

» (Assume that nodes are pushed
onto the queue in alphabetic
order)

» A>C->B

» Is this the shortest path?

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

BREADTH FIRST SEARCH

» Find a path from A to F using
breadth first search

» (Assume that nodes are pushed
onto the queue in alphabetic
order)

» A>C->B

» Is this the shortest path?

» Yes

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

BREADTH FIRST SEARCH

Paths to Consider (Queue)

Current Path

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

BREADTH FIRST SEARCH

Paths to Consider (Queue)

Current Path

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

BREADTH FIRST SEARCH

Paths to Consider

o, L

‘o 3

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

BREADTH FIRST SEARCH

Paths to Consider

ent Path

°3

YOU NEVER CONSIDER A PATH OF
LENGTH K + 1

UNTIL YOU'VE CONSIDERED ALL PATHS OF
LENGTH K OR SHORTER

COMPARING DFS
AND BFS

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

COMPARING DFS AND BFS
DFS

» create a path with just start node
and push onto stack s

» while s is not empty:
> p =s.popl)
» v =last node of p
» if vis end node, you're done

» mark v as visited

v

for each unvisited neighbor:

» create new path and append
neighbor

» push new path onto s

BFS

» create a path with just start node
and enqueue into queue g

» while g is not empty:
> p = qg.dequeue()
» v =last node of p
» if vis end node, you're done
» mark v as visited
» for each unvisited neighbor:

> create new path and append
neighbor

» enqueue new path into q

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

COMPARING DFS AND BFS
DFS

» create a path with just start node
and push onto stack s

» while s is not empty:
> p =s.popl)
» v =last node of p
» if vis end node, you're done

» mark v as visited

v

for each unvisited neighbor:

» create new path and append
neighbor

» push new path onto s

BFS

» create a path with just start node
and enqueue into queue q

» while g is not empty:
> p = g.dequeue()
» v =last node of p
» if vis end node, you're done
» mark v as visited
» for each unvisited neighbor:

> create new path and append
neighbor

» enqueue new path into q

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

THE GRAPH SEARCH T0-DO LIST

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

THE GRAPH SEARCH T0-DO LIST

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

THE GRAPH SEARCH T0-DO LIST

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

THE GRAPH SEARCH T0-DO LIST

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

THE GRAPH SEARCH T0-DO LIST

°e
° o

%

WEIGHTY
DECISIONS

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

DEALING WITH WEIGHTY TOPICS

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

DEALING WITH WEIGHTY TOPICS

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

DEALING WITH WEIGHTY TOPICS

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

DEALING WITH WEIGHTY TOPICS

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

DEALING WITH WEIGHTY TOPICS

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

DEALING WITH WEIGHTY TOPICS

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

DEALING WITH WEIGHTY TOPICS

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

DEALING WITH WEIGHTY TOPICS

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

DEALING WITH WEIGHTY TOPICS

IN DIJKSTRA'S ALGORITHM,

THE TODO LIST IS A PRIORITY
QUEUE

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

DIJKSTRA'S ALGORITHM (PSEUDOCODE)

> create a path with just start node and
enqueue into priority queue q

> while q is not empty
> p =qg.dequeue()
> v =last node of p
» if vis end node, you're done
> if you've seen v before, skip it
> mark v as visited
» for each unvisited neighbor:

> create new path and append
neighbor

> enqueue new path into g

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

DIJKSTRA'S ALGORITHM (PSEUDOCODE)

» create a path with just start node and
enqueue into priority queue q

» while g is not empty
> p = qg.dequeue()

» v =last node of p

v

if vis end node, you're done

4

if you've seen v before, skip it

v

mark v as visited

v

for each unvisited neighbor:
> create new path and append neighbor

> enqueue new path into g with priority
pathLength

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

DIJKSTRA'S 0DDS AND ENDS

> create a path with just start node and > What do you initialize the weight of the path
enqueue into priority queue q to?

» while g is not empty
> p = qg.dequeue()

» v =last node of p

v

if vis end node, you're done

4

if you've seen v before, skip it

v

mark v as visited

v

for each unvisited neighbor:
> create new path and append neighbor

> enqueue new path into g with priority
pathLength

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

DIJKSTRA'S 0DDS AND ENDS

> create a path with just start node and > What do you initialize the weight of the path
enqueue into priority queue q to?
» while q IS not empty » Zero should be fine

> p = qg.dequeue()

» v =last node of p

v

if vis end node, you're done

4

if you've seen v before, skip it

v

mark v as visited

v

for each unvisited neighbor:
> create new path and append neighbor

> enqueue new path into g with priority
pathLength

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

DIJKSTRA'S 0DDS AND ENDS

» create a path with just start node and » Can'tl just return the path as soon as | find
enqueue into priority queue q the end node? Why wait until | dequeue?

» while g is not empty
> p = qg.dequeue()

» v =last node of p

v

if vis end node, you're done

4

if you've seen v before, skip it

v

mark v as visited

v

for each unvisited neighbor:
> create new path and append neighbor

> enqueue new path into g with priority
pathLength

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

DIJKSTRA'S 0DDS AND ENDS

» create a path with just start node and » Can'tl just return the path as soon as | find
enqueue into priority queue q the end node? Why wait until | dequeue?
» while qis not empty » This is one of the most common

mistakes people make with Dijkstra's!
> p = qg.dequeue()

> It's possible a path with a lower priority
v = last node of p gets enqueued in the meantime.

v

v

if vis end node, you're done

4

if you've seen v before, skip it

v

mark v as visited

v

for each unvisited neighbor:
> create new path and append neighbor

> enqueue new path into g with priority
pathLength

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

DIJKSTRA'S 0DDS AND ENDS

» create a path with just start node and
enqueue into priority queue q

» while g is not empty
> p = qg.dequeue()

» v =last node of p

v

if vis end node, you're done

4

if you've seen v before, skip it

v

mark v as visited

v

for each unvisited neighbor:
> create new path and append neighbor

> enqueue new path into g with priority
pathLength

> Why would you skip the node just because
you've seen it before?

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

DIJKSTRA'S 0DDS AND ENDS

» create a path with just start node and » Why would you skip the node just because
enqueue into priority queue q you've seen it before?

» while g is not empty > If you've seen the node before, that means
you've already found a shorter path to it.

4 -
P = q.dequeue() > Any path that follows from this one already

> v =last node of p has a shorter equivalent

> The first path you find to v will be the
shortest path to v

v

if vis end node, you're done

4

if you've seen v before, skip it

v

mark v as visited

v

for each unvisited neighbor:
> create new path and append neighbor

> enqueue new path into g with priority
pathLength

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

NEGATIVE EDGES

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

NEGATIVE CYCLES

DIJKSTRA'S MEASURES THE DISTANCE FROM
THE START NODE TO THE CURRENT NODE.

WE WANT THE DISTANCE FROM THE CURRENT
NODE TO THE DESTINATION.

SEEING THE
FUTURE

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

FORMAL DEFINITIONS

distance(s, u) futureCost(u, t)

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

FORMAL DEFINITIONS

distance(s, u) futureCost(u, t)

DIJKSTRA'S

priority(u) = distance(s, u)

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

FORMAL DEFINITIONS

distance(s, u) futureCost(u, t)

DIJKSTRA'S IDEAL

priority(u) = distance(s, u) priority(u) = distance(s, u)
+ futureCost(u, t)

- TQ

WS apa

function futureCost(u, t)
return abs(u.row - t.row) + abs(u.col - t.col)

MAKING GOOD
LIFE DECISIONS

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

FORMAL DEFINITIONS

distance(s, u) futureCost(u, t)

IDEAL

priority(u) = distance(s, u)
+ futureCost(u, t)

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

FORMAL DEFINITIONS

distance(s, u) heuristic(u, t) < futureCost(u ,t)

IDEAL A*

priority(u) = distance(s, u) priority(u) = distance(s, u)
+ futureCost(u, t) + heuristic(u, t)

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

HEURISTICS

distance(s, u) heuristic(u, t) < futureCost(u ,t)

A heuristic is a function that underestimates
the cost of of traveling from u to t.

It's a "relaxation" heuristic.

columns apart
rows apart

¥

* *

2 +

2 +

2+ 3+

2+ 3+

2 +

2 +

2 +

S

S

6

6

2+ |3+ 4+

7

2+ |3+ 4+

7

2 +

2 +

2 +

S

S

6

6

2+ |3+ 4+

7

2+ |3+ 4+

7

3+

“.53 AN 3“.5

fola = e

NN T — an

o.”sn/_ — 29.”8
ho

3+

3+

8
38+ 2 36+
S22 1 2
3t 2 1 1) ¢
P2 1] 2
38+ 9 36+
3+

3+ |4+
8 7
3+
3 2 3
3+
3 2 1 2
3+
g | 2 | 1 1 *
3+
3 2 1 2
3+
8 2 3
3+ 4+
8 7

3+(4+ 5+
8 7 6
3+
3 2 3
3+
8 2 1 2
3+
g | 2 | 1 1 *
3+
3 2 1 2
3+
g 2 3
3+ 4+
8 7

3+ 4+ 5+ 6+
8 7 6 5
3+ 6 +
g 2 3 4 5 3
3+
8 2 1 2
3+
g | 2 | 1 1 *
3+
3 2 1 2
3+
g 2 3
3+ 4+
8 7

3+ |4+ 5+ 6+
8 7 6 5
3+
3 2 3
3+
8 2 1 2
3+
g 2 1 1
3+
8 2 1 2
3+
3 2 3
3+ 4+
8 7

3+ 4+ 5+ 6+ |6+
8 7 6 5 4
3+
3 2 3
3+
8 2 1 2
3+
g 2 1 1
3+
8 2 1 2
3+
3 2 3
3+ 4+
8 7

3+ 4+ 5+ 6+ |6+
8 7 6 5 4
3+
3 2 3
3+
8 2 1 2
3+
g 2 1 1
3+
8 2 1 2
3+
3 2 3
3+ 4+
8 7

3+ 4+ 5+ 6+ |6+
8 7 6 5 4
3+
3 2 3
3+
8 2 1 2
3+
g 2 1 1
3+
8 2 1 2
3+
3 2 3
3+ 4+
8 7

3+ 4+ 5+ 6+ |6+
8 7 6 5 4
3+
3 2 3
3+
8 2 1 2
3+
g 2 1 1
3+
8 2 1 2
3+
3 2 3
3+ 4+
8 7

3+ 4+ S5+ 6+ 6+ 8+
8 7 6 5 4 3
3+ 8 +
g 2 3 4 5 7/ 3
3+
8 2 1 2
3+
g 2 1 1
3+
8 2 1 2
3+
3 2 3
3+ 4+
8 7

3+ 4+ S5+ 6+ 6+ 8+
8 7 6 5 4 3
3+
3 2 3
3+
8 2 1 2
3+
g 2 1 1
3+
8 2 1 2
3+
3 2 3
3+ 4+
8 7

3+ 4+ S5+ 6+ 6+ 8+
8 7 6 5 4 3
3+
3 2 3
3+
8 2 1 2
3+
g 2 1 1
3+
8 2 1 2
3+
3 2 3
3+ 4+
8 7

- ™

ot <
o o
in o ©
* N +™
" @ -

- ™

ot <
o™ o'
i © n
“.7 AN ™M “.7
o.”s — N n._..woo

~
el

3+

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

A* (PSEUDOCODE)

> create a path with just start node and
engqueue into priority queue q

» while g is not empty and end node isn't
visited:

> p = qg.dequeue()

» v =last node of p

> mark v as visited

> for each unvisited neighbor:

> create new path and append
neighbor

» enqueue new path into g with
priority pathLength + heuristic

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

COMPARING DIJKSTRA AND A*
DIJKSTRA A*

> create a path with just start node and > create a path with just start node and
engqueue into priority queue q enqueue into priority queue q
> while g is not empty and end node isn't » while g is not empty and end node isn't
visited: visited:
> p = qg.dequeue() > p = qg.dequeue()
» v = last node of p » v = last node of p
> mark v as visited > mark v as visited
» for each unvisited neighbor: » for each unvisited neighbor:
> create new path and append > create new path and append
neighbor neighbor
» enqueue new path into g with > enqueue new path into g with

priority pathLength priority pathLength + heuristic

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

COMPARING DIJKSTRA AND A*
DIJKSTRA A*

> create a path with just start node and > create a path with just start node and
engqueue into priority queue q enqueue into priority queue q
> while g is not empty and end node isn't » while g is not empty and end node isn't
visited: visited:
> p = qg.dequeue() > p = qg.dequeue()
» v = last node of p » v = last node of p
> mark v as visited > mark v as visited
» for each unvisited neighbor: » for each unvisited neighbor:
> create new path and append > create new path and append
neighbor neighbor
» enqueue new path into g with > enqueue new path into g with

priority pathLength priority pathLength + heuristic

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

COMPARING DIJKSTRA AND A*
DIJKSTRA A*

> create a path with just start node and > create a path with just start node and
engqueue into priority queue q enqueue into priority queue q
> while g is not empty and end node isn't » while g is not empty and end node isn't
visited: visited:
> p = qg.dequeue() > p = qg.dequeue()
» v = last node of p » v = last node of p
> mark v as visited > mark v as visited
» for each unvisited neighbor: » for each unvisited neighbor:
> create new path and append > create new path and append
neighbor neighbor
» enqueue new path into g with > enqueue new path into g with

priority pathLength priority pathLength + O

YOU WANT YOUR HEURISTIC TO BE AS LARGE
AS POSSIBLE

BUT YOU NEVER WANT IT TO BE LARGER THAN
THE ACTUAL COST.

GOO0GLE MAPS

© CS 108E Trailblazer

-z) Jun | @ Clear

i kstra : Delay:

o
%’ |
°

>

o
og @ o
o0 ‘
© 0450 00 ®og :

?

% ¢
"
g
5
o
e o %Mf«o‘-“"

?

c

l‘o'a"

b Y
..-—oﬁm

NN -

World. map-stanforc.txt $ |l Olead [136471)

\Z, - v'a”\\‘

S U}btdre
Garden

O

Bing Concert Hall

L-asue n-Sy

Stanford Memorial
Auditorium

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

WHY DOESN'T GOOGLE MAPS PRECOMPUTE DIRECTIONS?

» How many nodes are in the Google Maps graph?

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

WHY DOESN'T GOOGLE MAPS PRECOMPUTE DIRECTIONS?

» How many nodes are in the Google Maps graph?

» About 75 million

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

WHY DOESN'T GOOGLE MAPS PRECOMPUTE DIRECTIONS?

» How many nodes are in the Google Maps graph?
» About 75 million

» How many sets of directions would they need to generate?

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

WHY DOESN'T GOOGLE MAPS PRECOMPUTE DIRECTIONS?

» How many nodes are in the Google Maps graph?
» About 75 million
» How many sets of directions would they need to generate?

» (roughly) N?

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

WHY DOESN'T GOOGLE MAPS PRECOMPUTE DIRECTIONS?

» How many nodes are in the Google Maps graph?
» About 75 million

» How many sets of directions would they need to generate?
» (roughly) N?

» How long would that take?

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

WHY DOESN'T GOOGLE MAPS PRECOMPUTE DIRECTIONS?

» How many nodes are in the Google Maps graph?
» About 75 million

» How many sets of directions would they need to generate?
» (roughly) N?

» How long would that take?

» 6 x 10" seconds

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

WHY DOESN'T GOOGLE MAPS PRECOMPUTE DIRECTIONS?

» How many nodes are in the Google Maps graph?
» About 75 million

» How many sets of directions would they need to generate?
» (roughly) N?

» How long would that take?
» 6x 10" seconds

» Or... 190 million years

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

WHAT HEURISTICS COULD GOOGLE USE?

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

WHAT HEURISTICS COULD GOOGLE USE?

» As the crow flies

» Calculate the straight-line distance from A to B, and divide by
the speed on the fastest highway

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

WHAT HEURISTICS COULD GOOGLE USE?

» As the crow flies

» Calculate the straight-line distance from A to B, and divide by
the speed on the fastest highway

» Landmark heuristic

» Find the distance from A and B to a landmark, calculate the
difference (distance < abs(A - B))

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

WHAT HEURISTICS COULD GOOGLE USE?

» As the crow flies

» Calculate the straight-line distance from A to B, and divide by
the speed on the fastest highway

» Landmark heuristic

» Find the distance from A and B to a landmark, calculate the
difference (distance < abs(A - B))

» All of these and more?

» You can use multiple heuristics and choose the max

