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THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

TODAY'S TOPICS - MORE GRAPHS!

» Reviewing DFS and BFS

» Comparing DFS and BFS

» Making weighty decisions using Dijkstra's algorithm
» Looking into the future with A*

» Google Maps



REVIEWING DFS
AND BFS
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DEPTH FIRST SEARCH

» Find a path from A to B using
iterative depth first search

» (Assume that nodes are pushed
onto the stack in alphabetic
order)
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DEPTH FIRST SEARCH (ITERATIVE PSEUDOCODE)

> create a path with just start node and
push onto stack s

> while s is not empty
> p = s.pop()
» v =last node of p
» if vis end, you're done
> mark v as visited

» for each unvisited neighbor:

» create new path and append
neighbor

» push new path onto s
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DEPTH FIRST SEARCH

» Find a path from A to B using
iterative depth first search

» (Assume that nodes are pushed
onto the stack in alphabetic
order)

» AE=>F->D->B
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DEPTH FIRST SEARCH

» Find a path from A to B using
iterative depth first search

» (Assume that nodes are pushed
onto the stack in alphabetic
order)

» AE=>F->D->B

» Is this the shortest path?




THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

DEPTH FIRST SEARCH

Paths to Consider (Stack)
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DEPTH FIRST SEARCH

Paths to Consider (Stack)

Current Path
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DEPTH FIRST SEARCH

Paths to Consider (Stack)

Current Path
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DEPTH FIRST SEARCH

Paths to Consider (Stack)

Current Path
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DEPTH FIRST SEARCH

Paths to Consider (Stack)

Current Path
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BREADTH FIRST SEARCH

» Find a path from A to B using
breadth first search

» (Assume that nodes are pushed
onto the queue in alphabetic
order)
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BREADTH FIRST SEARCH (PSEUDOCODE)

> create a path with just start node
and enqueue into queue q

» while g is not empty
» p = g.dequeue()
» v =last node of p
» if vis end, you're done
» mark v as visited

» for each unvisited neighbor:

» create new path and append
neighbor

> enqueue new path into q
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BREADTH FIRST SEARCH

» Find a path from A to F using
breadth first search

» (Assume that nodes are pushed
onto the queue in alphabetic
order)

» A>C->B
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BREADTH FIRST SEARCH

» Find a path from A to F using
breadth first search

» (Assume that nodes are pushed
onto the queue in alphabetic
order)

» A>C->B

» Is this the shortest path?
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BREADTH FIRST SEARCH

» Find a path from A to F using
breadth first search

» (Assume that nodes are pushed
onto the queue in alphabetic
order)

» A>C->B

» Is this the shortest path?

» Yes
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BREADTH FIRST SEARCH

Paths to Consider (Queue)

Current Path
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BREADTH FIRST SEARCH

Paths to Consider (Queue)

Current Path
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BREADTH FIRST SEARCH

Paths to Consider

o, L

‘o 3
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BREADTH FIRST SEARCH

Paths to Consider

ent Path
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YOU NEVER CONSIDER A PATH OF
LENGTH K + 1

UNTIL YOU'VE CONSIDERED ALL PATHS OF
LENGTH K OR SHORTER



COMPARING DFS
AND BFS
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COMPARING DFS AND BFS
DFS

» create a path with just start node
and push onto stack s

» while s is not empty:
> p =s.popl)
» v =last node of p
» if vis end node, you're done

» mark v as visited

v

for each unvisited neighbor:

» create new path and append
neighbor

» push new path onto s

BFS

» create a path with just start node
and enqueue into queue g

» while g is not empty:
> p = qg.dequeue()
» v =last node of p
» if vis end node, you're done
» mark v as visited
» for each unvisited neighbor:

> create new path and append
neighbor

» enqueue new path into q
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COMPARING DFS AND BFS
DFS

» create a path with just start node
and push onto stack s

» while s is not empty:
> p =s.popl)
» v =last node of p
» if vis end node, you're done

» mark v as visited

v

for each unvisited neighbor:

» create new path and append
neighbor

» push new path onto s

BFS

» create a path with just start node
and enqueue into queue q

» while g is not empty:
> p = g.dequeue()
» v =last node of p
» if vis end node, you're done
» mark v as visited
» for each unvisited neighbor:

> create new path and append
neighbor

» enqueue new path into q
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THE GRAPH SEARCH T0-DO LIST
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THE GRAPH SEARCH T0-DO LIST
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THE GRAPH SEARCH T0-DO LIST
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THE GRAPH SEARCH T0-DO LIST
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WEIGHTY
DECISIONS
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DEALING WITH WEIGHTY TOPICS
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DEALING WITH WEIGHTY TOPICS
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DEALING WITH WEIGHTY TOPICS




IN DIJKSTRA'S ALGORITHM,

THE TODO LIST IS A PRIORITY
QUEUE



THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

DIJKSTRA'S ALGORITHM (PSEUDOCODE)

> create a path with just start node and
enqueue into priority queue q

> while q is not empty
> p =qg.dequeue()
> v =last node of p
» if vis end node, you're done
> if you've seen v before, skip it
> mark v as visited
» for each unvisited neighbor:

> create new path and append
neighbor

> enqueue new path into g
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DIJKSTRA'S ALGORITHM (PSEUDOCODE)

» create a path with just start node and
enqueue into priority queue q

» while g is not empty
> p = qg.dequeue()

» v =last node of p

v

if vis end node, you're done

4

if you've seen v before, skip it

v

mark v as visited

v

for each unvisited neighbor:
> create new path and append neighbor

> enqueue new path into g with priority
pathLength
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DIJKSTRA'S 0DDS AND ENDS

> create a path with just start node and > What do you initialize the weight of the path
enqueue into priority queue q to?

» while g is not empty
> p = qg.dequeue()

» v =last node of p

v

if vis end node, you're done

4

if you've seen v before, skip it

v

mark v as visited

v

for each unvisited neighbor:
> create new path and append neighbor

> enqueue new path into g with priority
pathLength
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DIJKSTRA'S 0DDS AND ENDS

> create a path with just start node and > What do you initialize the weight of the path
enqueue into priority queue q to?
» while q IS not empty » Zero should be fine

> p = qg.dequeue()

» v =last node of p

v

if vis end node, you're done

4

if you've seen v before, skip it

v

mark v as visited

v

for each unvisited neighbor:
> create new path and append neighbor

> enqueue new path into g with priority
pathLength
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DIJKSTRA'S 0DDS AND ENDS

» create a path with just start node and » Can'tl just return the path as soon as | find
enqueue into priority queue q the end node? Why wait until | dequeue?

» while g is not empty
> p = qg.dequeue()

» v =last node of p

v

if vis end node, you're done

4

if you've seen v before, skip it

v

mark v as visited

v

for each unvisited neighbor:
> create new path and append neighbor

> enqueue new path into g with priority
pathLength



THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

DIJKSTRA'S 0DDS AND ENDS

» create a path with just start node and » Can'tl just return the path as soon as | find
enqueue into priority queue q the end node? Why wait until | dequeue?
» while qis not empty » This is one of the most common

mistakes people make with Dijkstra's!
> p = qg.dequeue()

> It's possible a path with a lower priority
v = last node of p gets enqueued in the meantime.

v

v

if vis end node, you're done

4

if you've seen v before, skip it

v

mark v as visited

v

for each unvisited neighbor:
> create new path and append neighbor

> enqueue new path into g with priority
pathLength



THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

DIJKSTRA'S 0DDS AND ENDS

» create a path with just start node and
enqueue into priority queue q

» while g is not empty
> p = qg.dequeue()

» v =last node of p

v

if vis end node, you're done

4

if you've seen v before, skip it

v

mark v as visited

v

for each unvisited neighbor:
> create new path and append neighbor

> enqueue new path into g with priority
pathLength

> Why would you skip the node just because
you've seen it before?
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DIJKSTRA'S 0DDS AND ENDS

» create a path with just start node and » Why would you skip the node just because
enqueue into priority queue q you've seen it before?

» while g is not empty > If you've seen the node before, that means
you've already found a shorter path to it.

4 -
P = q.dequeue() > Any path that follows from this one already

> v =last node of p has a shorter equivalent

> The first path you find to v will be the
shortest path to v

v

if vis end node, you're done

4

if you've seen v before, skip it

v

mark v as visited

v

for each unvisited neighbor:
> create new path and append neighbor

> enqueue new path into g with priority
pathLength
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NEGATIVE EDGES
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NEGATIVE CYCLES

































































































DIJKSTRA'S MEASURES THE DISTANCE FROM
THE START NODE TO THE CURRENT NODE.

WE WANT THE DISTANCE FROM THE CURRENT
NODE TO THE DESTINATION.



SEEING THE
FUTURE
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FORMAL DEFINITIONS

distance(s, u) futureCost(u, t)
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FORMAL DEFINITIONS

distance(s, u) futureCost(u, t)

DIJKSTRA'S

priority(u) = distance(s, u)
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FORMAL DEFINITIONS

distance(s, u) futureCost(u, t)

DIJKSTRA'S IDEAL

priority(u) = distance(s, u)  priority(u) = distance(s, u)
+ futureCost(u, t)






- TQ

WS apa

function futureCost(u, t)
return abs(u.row - t.row) + abs(u.col - t.col)











































MAKING GOOD
LIFE DECISIONS
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FORMAL DEFINITIONS

distance(s, u) futureCost(u, t)

IDEAL

priority(u) = distance(s, u)
+ futureCost(u, t)
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FORMAL DEFINITIONS

distance(s, u) heuristic(u, t) < futureCost(u ,t)

IDEAL A*

priority(u) = distance(s, u) priority(u) = distance(s, u)
+ futureCost(u, t) + heuristic(u, t)
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HEURISTICS

distance(s, u) heuristic(u, t) < futureCost(u ,t)

A heuristic is a function that underestimates
the cost of of traveling from u to t.

It's a "relaxation" heuristic.
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A* (PSEUDOCODE)

> create a path with just start node and
engqueue into priority queue q

» while g is not empty and end node isn't
visited:

> p = qg.dequeue()

» v =last node of p

> mark v as visited

> for each unvisited neighbor:

> create new path and append
neighbor

» enqueue new path into g with
priority pathLength + heuristic
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COMPARING DIJKSTRA AND A*
DIJKSTRA A*

> create a path with just start node and > create a path with just start node and
engqueue into priority queue q enqueue into priority queue q
> while g is not empty and end node isn't » while g is not empty and end node isn't
visited: visited:
> p = qg.dequeue() > p = qg.dequeue()
» v = last node of p » v = last node of p
> mark v as visited > mark v as visited
» for each unvisited neighbor: » for each unvisited neighbor:
> create new path and append > create new path and append
neighbor neighbor
» enqueue new path into g with > enqueue new path into g with

priority pathLength priority pathLength + heuristic



THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

COMPARING DIJKSTRA AND A*
DIJKSTRA A*

> create a path with just start node and > create a path with just start node and
engqueue into priority queue q enqueue into priority queue q
> while g is not empty and end node isn't » while g is not empty and end node isn't
visited: visited:
> p = qg.dequeue() > p = qg.dequeue()
» v = last node of p » v = last node of p
> mark v as visited > mark v as visited
» for each unvisited neighbor: » for each unvisited neighbor:
> create new path and append > create new path and append
neighbor neighbor
» enqueue new path into g with > enqueue new path into g with

priority pathLength priority pathLength + heuristic



THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

COMPARING DIJKSTRA AND A*
DIJKSTRA A*

> create a path with just start node and > create a path with just start node and
engqueue into priority queue q enqueue into priority queue q
> while g is not empty and end node isn't » while g is not empty and end node isn't
visited: visited:
> p = qg.dequeue() > p = qg.dequeue()
» v = last node of p » v = last node of p
> mark v as visited > mark v as visited
» for each unvisited neighbor: » for each unvisited neighbor:
> create new path and append > create new path and append
neighbor neighbor
» enqueue new path into g with > enqueue new path into g with

priority pathLength priority pathLength + O



YOU WANT YOUR HEURISTIC TO BE AS LARGE
AS POSSIBLE

BUT YOU NEVER WANT IT TO BE LARGER THAN
THE ACTUAL COST.



GOO0GLE MAPS
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WHY DOESN'T GOOGLE MAPS PRECOMPUTE DIRECTIONS?

» How many nodes are in the Google Maps graph?
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WHY DOESN'T GOOGLE MAPS PRECOMPUTE DIRECTIONS?

» How many nodes are in the Google Maps graph?

» About 75 million
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WHY DOESN'T GOOGLE MAPS PRECOMPUTE DIRECTIONS?

» How many nodes are in the Google Maps graph?
» About 75 million

» How many sets of directions would they need to generate?
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WHY DOESN'T GOOGLE MAPS PRECOMPUTE DIRECTIONS?

» How many nodes are in the Google Maps graph?
» About 75 million
» How many sets of directions would they need to generate?

» (roughly) N?
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WHY DOESN'T GOOGLE MAPS PRECOMPUTE DIRECTIONS?

» How many nodes are in the Google Maps graph?
» About 75 million

» How many sets of directions would they need to generate?
» (roughly) N?

» How long would that take?
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WHY DOESN'T GOOGLE MAPS PRECOMPUTE DIRECTIONS?

» How many nodes are in the Google Maps graph?
» About 75 million

» How many sets of directions would they need to generate?
» (roughly) N?

» How long would that take?

» 6 x 10" seconds
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WHY DOESN'T GOOGLE MAPS PRECOMPUTE DIRECTIONS?

» How many nodes are in the Google Maps graph?
» About 75 million

» How many sets of directions would they need to generate?
» (roughly) N?

» How long would that take?
» 6x 10" seconds

» Or... 190 million years



THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

WHAT HEURISTICS COULD GOOGLE USE?
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WHAT HEURISTICS COULD GOOGLE USE?

» As the crow flies

» Calculate the straight-line distance from A to B, and divide by
the speed on the fastest highway
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WHAT HEURISTICS COULD GOOGLE USE?

» As the crow flies

» Calculate the straight-line distance from A to B, and divide by
the speed on the fastest highway

» Landmark heuristic

» Find the distance from A and B to a landmark, calculate the
difference (distance < abs(A - B))
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WHAT HEURISTICS COULD GOOGLE USE?

» As the crow flies

» Calculate the straight-line distance from A to B, and divide by
the speed on the fastest highway

» Landmark heuristic

» Find the distance from A and B to a landmark, calculate the
difference (distance < abs(A - B))

» All of these and more?

» You can use multiple heuristics and choose the max



