
DIJKSTRA AND A*
THE LIFE CHANGING MAGIC OF

Programming Abstractions (Accelerated)  
Winter 2017 
Stanford University 
Computer Science Department

Friday, March 10, 2017  
Reading: Programming Abstractions in C++, Chapter 18.6

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

TODAY'S TOPICS - MORE GRAPHS!

▸ Reviewing DFS and BFS

▸ Comparing DFS and BFS

▸ Making weighty decisions using Dijkstra's algorithm

▸ Looking into the future with A*

▸ Google Maps

REVIEWING DFS
AND BFS

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

DEPTH FIRST SEARCH

▸ Find a path from A to B using
iterative depth first search

▸ (Assume that nodes are pushed
onto the stack in alphabetic
order)

A

B C

D

F

E

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

DEPTH FIRST SEARCH (ITERATIVE PSEUDOCODE)

‣ create a path with just start node and
push onto stack s

‣ while s is not empty
‣ p = s.pop()
‣ v = last node of p
‣ if v is end, you're done
‣ mark v as visited
‣ for each unvisited neighbor:
‣ create new path and append

neighbor
‣ push new path onto s

A

B C

D

F

E

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

DEPTH FIRST SEARCH

▸ Find a path from A to B using
iterative depth first search

▸ (Assume that nodes are pushed
onto the stack in alphabetic
order)

▸ A ➔ E ➔ F ➔ D ➔ B

A

B C

D

F

E

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

DEPTH FIRST SEARCH

▸ Find a path from A to B using
iterative depth first search

▸ (Assume that nodes are pushed
onto the stack in alphabetic
order)

▸ A ➔ E ➔ F ➔ D ➔ B

▸ Is this the shortest path?

A

B C

D

F

E

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

DEPTH FIRST SEARCH

A

Paths to Consider (Stack)

A

B C

D

F

E

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

DEPTH FIRST SEARCH
Paths to Consider (Stack)

A

B C

D

F

E

Current Path

A

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

DEPTH FIRST SEARCH
Paths to Consider (Stack)

A

B C

D

F

E

Current Path

A

A

C

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

DEPTH FIRST SEARCH
Paths to Consider (Stack)

A

B C

D

F

E

Current Path

A

A

E

A

C

A

E

A

C

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

DEPTH FIRST SEARCH
Paths to Consider (Stack)

A

B C

D

F

E

Current Path

A

E

A

C

A

E

A

C

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

DEPTH FIRST SEARCH
Paths to Consider (Stack)

A

B C

D

F

E

Current Path

A

C

A

E

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

DEPTH FIRST SEARCH
Paths to Consider (Stack)

A

B C

D

F

E

Current Path

A

C

A

E

A

E

F

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

DEPTH FIRST SEARCH
Paths to Consider (Stack)

A

B C

D

F

E

Current Path

A

C

A

E

F

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

BREADTH FIRST SEARCH

▸ Find a path from A to B using
breadth first search

▸ (Assume that nodes are pushed
onto the queue in alphabetic
order)

A

B C

D

F

E

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

BREADTH FIRST SEARCH (PSEUDOCODE)

‣ create a path with just start node
and enqueue into queue q

‣ while q is not empty
‣ p = q.dequeue()
‣ v = last node of p
‣ if v is end, you're done
‣ mark v as visited
‣ for each unvisited neighbor:
‣ create new path and append

neighbor
‣ enqueue new path into q

A

B C

D

F

E

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

BREADTH FIRST SEARCH

▸ Find a path from A to F using
breadth first search

▸ (Assume that nodes are pushed
onto the queue in alphabetic
order)

▸ A ➔ C ➔ B

A

B C

D

F

E

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

BREADTH FIRST SEARCH

▸ Find a path from A to F using
breadth first search

▸ (Assume that nodes are pushed
onto the queue in alphabetic
order)

▸ A ➔ C ➔ B

▸ Is this the shortest path?

A

B C

D

F

E

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

BREADTH FIRST SEARCH

▸ Find a path from A to F using
breadth first search

▸ (Assume that nodes are pushed
onto the queue in alphabetic
order)

▸ A ➔ C ➔ B

▸ Is this the shortest path?

▸ Yes

A

B C

D

F

E

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

BREADTH FIRST SEARCH
Paths to Consider (Queue)

A

A

B C

D

F

E

Current Path

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

BREADTH FIRST SEARCH
Paths to Consider (Queue)

A

A

C

A

EA

B C

D

F

E

Current Path

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

BREADTH FIRST SEARCH
Paths to Consider (Queue)

A

E

A

C

A

B C

D

F

E

Current Path

A

C

B

A

C

E

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

BREADTH FIRST SEARCH
Paths to Consider (Queue)

A

E

A

B C

D

F

E

Current Path

A

C

E

A

C

B

A

E

F

YOU NEVER CONSIDER A PATH OF
LENGTH K + 1

UNTIL YOU'VE CONSIDERED ALL PATHS OF
LENGTH K OR SHORTER

COMPARING DFS
AND BFS

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

COMPARING DFS AND BFS

‣ create a path with just start node
and push onto stack s

‣ while s is not empty:
‣ p = s.pop()
‣ v = last node of p
‣ if v is end node, you're done
‣ mark v as visited
‣ for each unvisited neighbor:
‣ create new path and append

neighbor
‣ push new path onto s

‣ create a path with just start node
and enqueue into queue q

‣ while q is not empty:
‣ p = q.dequeue()
‣ v = last node of p
‣ if v is end node, you're done
‣ mark v as visited
‣ for each unvisited neighbor:
‣ create new path and append

neighbor
‣ enqueue new path into q

BFSDFS

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

COMPARING DFS AND BFS

‣ create a path with just start node
and push onto stack s

‣ while s is not empty:
‣ p = s.pop()
‣ v = last node of p
‣ if v is end node, you're done
‣ mark v as visited
‣ for each unvisited neighbor:
‣ create new path and append

neighbor
‣ push new path onto s

‣ create a path with just start node
and enqueue into queue q

‣ while q is not empty:
‣ p = q.dequeue()
‣ v = last node of p
‣ if v is end node, you're done
‣ mark v as visited
‣ for each unvisited neighbor:
‣ create new path and append

neighbor
‣ enqueue new path into q

BFSDFS

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

THE GRAPH SEARCH TO-DO LIST

A

B C

D

F

E

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

THE GRAPH SEARCH TO-DO LIST

A

B C

D

F

E

A

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

THE GRAPH SEARCH TO-DO LIST

A

B C

D

F

E

A

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

THE GRAPH SEARCH TO-DO LIST

A

A

C

A

E

A

B C

D

F

E

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

THE GRAPH SEARCH TO-DO LIST

A

B C

D

F

E

A

C

A

E

WEIGHTY
DECISIONS

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

DEALING WITH WEIGHTY TOPICS

A

B C

D

F

E

1

4

17

11

1

A

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

DEALING WITH WEIGHTY TOPICS

A

B C

D

F

E

1

4

17

11

1

A

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

DEALING WITH WEIGHTY TOPICS

A

B C

D

F

E

1

4

17

11

1

A

A

C

1

A

E

4

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

DEALING WITH WEIGHTY TOPICS

A

B C

D

F

E

1

4

47

11

1

A

C

1

A

E

4

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

DEALING WITH WEIGHTY TOPICS

A

B C

D

F

E

1

4

47

11

1

A

C

1

A

E

4

A

C

B

A

C

E

1

7
1

4

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

DEALING WITH WEIGHTY TOPICS

A

B C

D

F

E

1

4

47

11

1

A

E

4

A

C

B

A

C

E

1

7
1

4

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

DEALING WITH WEIGHTY TOPICS

A

B C

D

F

E

1

4

47

11

1

A

E

4

A

C

B

A

C

E

1

7
1

4

A

E

F

4

1

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

DEALING WITH WEIGHTY TOPICS

A

B C

D

F

E

1

4

47

11

1

A

C

B

A

C

E

1

7
1

4

A

E

F

4

1

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

DEALING WITH WEIGHTY TOPICS

A

B C

D

F

E

1

4

47

11

1

A

C

B

A

C

E

1

7

1

4

A

E

F

4

1

IN DIJKSTRA'S ALGORITHM,

THE TODO LIST IS A PRIORITY
QUEUE

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

DIJKSTRA'S ALGORITHM (PSEUDOCODE)

‣ create a path with just start node and
enqueue into priority queue q

‣ while q is not empty
‣ p = q.dequeue()
‣ v = last node of p
‣ if v is end node, you're done
‣ if you've seen v before, skip it
‣ mark v as visited
‣ for each unvisited neighbor:
‣ create new path and append

neighbor
‣ enqueue new path into q

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

DIJKSTRA'S ALGORITHM (PSEUDOCODE)

‣ create a path with just start node and
enqueue into priority queue q

‣ while q is not empty
‣ p = q.dequeue()
‣ v = last node of p
‣ if v is end node, you're done
‣ if you've seen v before, skip it
‣ mark v as visited
‣ for each unvisited neighbor:

‣ create new path and append neighbor
‣ enqueue new path into q with priority

pathLength

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

DIJKSTRA'S ODDS AND ENDS

‣ create a path with just start node and
enqueue into priority queue q

‣ while q is not empty
‣ p = q.dequeue()
‣ v = last node of p
‣ if v is end node, you're done
‣ if you've seen v before, skip it
‣ mark v as visited
‣ for each unvisited neighbor:

‣ create new path and append neighbor
‣ enqueue new path into q with priority

pathLength

‣ What do you initialize the weight of the path
to?
‣ Zero should be fine

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

DIJKSTRA'S ODDS AND ENDS

‣ create a path with just start node and
enqueue into priority queue q

‣ while q is not empty
‣ p = q.dequeue()
‣ v = last node of p
‣ if v is end node, you're done
‣ if you've seen v before, skip it
‣ mark v as visited
‣ for each unvisited neighbor:

‣ create new path and append neighbor
‣ enqueue new path into q with priority

pathLength

‣ What do you initialize the weight of the path
to?
‣ Zero should be fine

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

DIJKSTRA'S ODDS AND ENDS

‣ create a path with just start node and
enqueue into priority queue q

‣ while q is not empty
‣ p = q.dequeue()
‣ v = last node of p
‣ if v is end node, you're done
‣ if you've seen v before, skip it
‣ mark v as visited
‣ for each unvisited neighbor:

‣ create new path and append neighbor
‣ enqueue new path into q with priority

pathLength

‣ Can't I just return the path as soon as I find
the end node? Why wait until I dequeue?
‣ This is one of the most common

mistakes people make with Dijkstra's!
‣ It's possible a path with a lower priority

gets enqueued in the meantime.

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

DIJKSTRA'S ODDS AND ENDS

‣ create a path with just start node and
enqueue into priority queue q

‣ while q is not empty
‣ p = q.dequeue()
‣ v = last node of p
‣ if v is end node, you're done
‣ if you've seen v before, skip it
‣ mark v as visited
‣ for each unvisited neighbor:

‣ create new path and append neighbor
‣ enqueue new path into q with priority

pathLength

‣ Can't I just return the path as soon as I find
the end node? Why wait until I dequeue?
‣ This is one of the most common

mistakes people make with Dijkstra's!
‣ It's possible a path with a lower priority

gets enqueued in the meantime.

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

DIJKSTRA'S ODDS AND ENDS

‣ create a path with just start node and
enqueue into priority queue q

‣ while q is not empty
‣ p = q.dequeue()
‣ v = last node of p
‣ if v is end node, you're done
‣ if you've seen v before, skip it
‣ mark v as visited
‣ for each unvisited neighbor:

‣ create new path and append neighbor
‣ enqueue new path into q with priority

pathLength

‣ Why would you skip the node just because
you've seen it before?
‣ If you've seen the node before, that means

you've already found a shorter path to it.
‣ Any path that follows from this one already

has a shorter equivalent

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

DIJKSTRA'S ODDS AND ENDS

‣ create a path with just start node and
enqueue into priority queue q

‣ while q is not empty
‣ p = q.dequeue()
‣ v = last node of p
‣ if v is end node, you're done
‣ if you've seen v before, skip it
‣ mark v as visited
‣ for each unvisited neighbor:

‣ create new path and append neighbor
‣ enqueue new path into q with priority

pathLength

‣ Why would you skip the node just because
you've seen it before?
‣ If you've seen the node before, that means

you've already found a shorter path to it.
‣ Any path that follows from this one already

has a shorter equivalent
‣ The first path you find to v will be the

shortest path to v

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

NEGATIVE EDGES

A

B

C D

GOAL1

1

5

-10

1

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

NEGATIVE CYCLES

A

B

C D

GOAL2

1

1

-10

1

E

-1-1

1

1 1

1

1

1

1

1

2

2

2

1

1

1

1

2

2

2

1

1

1

1

1

2

22

2

2

1 1

1

1

2

22

2

2

1 1

1

2

21

2

22

2

2

1 1

1

2

21

2

22

2

2

1 1

1

2

2

21

2

22

2

2

1 1

1

2

2

21

2

22

2

2

1 1

1

3

3

3

2

2

21

2

22

2

2

1 1

1

3

3

3

2

2

21

2

22

2

2

1 1

1

3

3

3

3

2

2

21

2

22

2

2

1 1

1

3

3

3

3

2

2

21

2

22

2

2

1 1

1

3

3

3

3

3

2

2

21

2

22

2

2

1 1

1

3

3

3

3

3

2

2

21

2

22

2

2

1 1

1

3

3

3

3

3

3

3

2

2

21

2

22

2

2

1 1

1

3

3

3

3

3

3

3

2

2

21

2

22

2

2

1 1

1

3

3

3

3

3

3

3

3

3

2

2

21

2

22

2

2

1 1

1

3

3

3

3

3

3

3

3

3

2

2

21

2

22

2

2

1 1

1

3

3

3

3

3

3

3

3

3

3

2

2

21

2

22

2

2

1 1

1

3

3

3

3

3

3

3

3

3

3

2

2

21

2

22

2

2

1 1

1

3

3

3

3

3

3

3

3

3

3

3

2

2

21

2

22

2

2

1 1

1

3

3

3

3

3

3

3

3

3

3

3

2

2

21

2

22

2

2

1 1

1

3

3

3

3

33

3

3

3

3

33

2

2

2

2

2

2 2

2

1

1 1

1

4

4

4 4

4

4

4

44

4

4

4

4

4

4

4

3

3

3

3

33

3

3

3

3

33

2

2

2

2

2

2 2

2

1

1 1

1

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

4

4

4 4

4

4

4

44

4

4

4

4

4

4

4

3

3

3

3

33

3

3

3

3

33

2

2

2

2

2

2 2

2

1

1 1

1

6

6

6

6

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

4

4

4 4

4

4

4

44

4

4

4

4

4

4

4

3

3

3

3

33

3

3

3

3

33

2

2

2

2

2

2 2

2

1

1 1

1

DIJKSTRA'S MEASURES THE DISTANCE FROM
THE START NODE TO THE CURRENT NODE.

WE WANT THE DISTANCE FROM THE CURRENT
NODE TO THE DESTINATION.

SEEING THE
FUTURE

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

FORMAL DEFINITIONS

S U T

distance(s, u) futureCost(u, t)

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

FORMAL DEFINITIONS

S U T

distance(s, u) futureCost(u, t)

DIJKSTRA'S

priority(u) = distance(s, u)

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

FORMAL DEFINITIONS

S U T

distance(s, u) futureCost(u, t)

DIJKSTRA'S

priority(u) = distance(s, u)

IDEAL

priority(u) = distance(s, u)  
 + futureCost(u, t)

columns apart

rows apart

function futureCost(u, t) 
 return abs(u.row - t.row) + abs(u.col - t.col)

1

1 1

1

1 +
6

1

1

1

1 +
6

1

1

1 +
6

1 +
6

1 +
6

1
1 +
6

1 +
6

1 +
6

1 +
6

1 +
4

2 +
3

1 +
5

1 +
5

1 +
6

1 +
6

1 +
6 1

3 +
4

3 +
4
2 3 +

2

2 +
5

2 +
5

1 +
6

1 +
6

1 +
6 1

4 +
3

4 +
3
3

3 +
4

3 +
4
2 4 +

1

2 +
5

2 +
5

1 +
6

1 +
6

1 +
6 1

5 +
2

5 +
2

4

4 +
3

4 +
3
3

3 +
4

3 +
4
2 5 +

0

2 +
5

2 +
5

1 +
6

1 +
6

1 +
6 1

5

5 +
2

5 +
2

4

4 +
3

4 +
3
3

3 +
4

3 +
4
2

2 +
5

2 +
5

1 +
6

1 +
6

1 +
6 1

MAKING GOOD
LIFE DECISIONS

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

FORMAL DEFINITIONS

S U T

distance(s, u) futureCost(u, t)

IDEAL

priority(u) = distance(s, u)  
 + futureCost(u, t)

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

FORMAL DEFINITIONS

S U T

distance(s, u)

IDEAL

priority(u) = distance(s, u)  
 + futureCost(u, t)

A*

priority(u) = distance(s, u) 
 + heuristic(u, t)

heuristic(u, t) ≤ futureCost(u ,t)

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

HEURISTICS

S U T

distance(s, u) heuristic(u, t) ≤ futureCost(u ,t)

A heuristic is a function that underestimates
the cost of of traveling from u to t.
It's a "relaxation" heuristic.

columns apart
rows apart

1

1 +
6

1 +
6

1 +
4

1 +
6

1

2 +
5

2 +
3

2 +
5

1 +
6

1 +
6

1

1 +
6

1

3 +
4

3 +
4

2 +
5

2

2 +
5

1 +
6

1 +
6

1

1 +
6

1

2 +
7

2 +
7

1

3 +
4

3 +
4

2 +
5

2

2 +
5

2 +
7

1 +
6

1

1 +
6

1

1

1

2 +
7

2 +
7

1

3 +
4

3 +
4

2 +
5

2

2 +
5

2 +
7

2 +
7

1

2 +
7

1

2

21

1

2 +
7

2 +
7

1

3 +
4

3 +
4

3 +
6

2

3 +
6

2 +
7

2 +
7

1

2 +
7

1

2

3

32

21

1

2 +
7

2 +
7

1

4 +
5

4 +
5

3 +
6

3 +
6

2 +
7

2 +
7

1

2 +
7

1

3 +
8

3 +
8

2 2

3

32

21

1

2 +
7

2 +
7

1

4 +
5

4 +
5

3 +
6

3 +
6

3 +
8

2 +
7

1

2 +
7

1

2

2

3 +
8

3 +
8

2 2

3

32

21

1

3 +
8

3 +
8

1

4 +
5

4 +
5

3 +
6

3 +
6

3 +
8

2 +
7

1

2 +
7

1

2

2

2

2

3 +
8

3 +
8

2 2

3

32

21

1

3 +
8

3 +
8

1

4 +
5

4 +
5

3 +
6

3 +
6

3 +
8

3 +
8

1

3 +
8

1

3

3

2

2

2

2

3 +
8

3 +
8

2 2

3

32

21

1

3 +
8

3 +
8

1

4 +
5

4 +
5

4 +
7

4 +
7

3 +
8

3 +
8

1

3 +
8

1

5 +
44

5 +
44

3

3

2

2

2

2

3 +
8

3 +
8

2 2

3

32

21

1

3 +
8

3 +
8

1

5 +
6

5 +
6

4 +
7

4 +
7

3 +
8

3 +
8

1

3 +
8

1

6 +
5

5 6 +
34

3

3

2

2

2

2

3 +
8

3 +
8

2 2

3

32

21

1

3 +
8

3 +
8

1

5 +
6

4 +
5

4 +
7

4 +
7

3 +
8

3 +
8

1

3 +
8

1

5 +
44

5 +
6

6 +
5

5

5 +
6

6 +
34

6 +
5

5 6 +
34

3

3

2

2

2

2

3 +
8

3 +
8

2 2

3

32

21

1

3 +
8

3 +
8

1

5 +
6

4 +
7

4 +
7

3 +
8

3 +
8

1

3 +
8

1

7 +
2

6 +
4

6

7 +
2

6 +
5

5

5 +
6

6 +
34

6 +
5

54

3

3

2

2

2

2

3 +
8

3 +
8

2 2

3

32

21

1

3 +
8

3 +
8

1

5 +
6

4 +
7

4 +
7

3 +
8

3 +
8

1

3 +
8

1

8 +
17

7 +
2

6 +
4

6

8 +
1

6 +
5

5

5 +
6

6 +
34

6 +
5

54

3

3

2

2

2

2

3 +
8

3 +
8

2 2

3

32

21

1

3 +
8

3 +
8

1

5 +
6

4 +
7

4 +
7

3 +
8

3 +
8

1

3 +
8

1

9 +
0

9 +
2

8

8 +
17

7 +
2

6 +
4

6

6 +
5

5

5 +
6

6 +
34

6 +
5

54

3

3

2

2

2

2

3 +
8

3 +
8

2 2

3

32

21

1

3 +
8

3 +
8

1

5 +
6

4 +
7

4 +
7

3 +
8

3 +
8

1

3 +
8

1

7 +
2

7 +
4

6

9 +
0

9 +
2

8

8 +
17

7 +
2

6 +
4

6

6 +
5

5

5 +
6

4

6 +
5

54

3

3

2

2

2

2

3 +
8

3 +
8

2 2

3

32

21

1

3 +
8

3 +
8

1

5 +
6

4 +
7

4 +
7

3 +
8

3 +
8

1

3 +
8

1

8 +
3

8 +
1

7

7 +
2

7 +
4

6

9 +
0

9 +
2

8

7

8 +
3

6 +
4

6

6 +
5

5

5 +
6

4

6 +
5

54

3

3

2

2

2

2

3 +
8

3 +
8

2 2

3

32

21

1

3 +
8

3 +
8

1

5 +
6

4 +
7

4 +
7

3 +
8

3 +
8

1

3 +
8

1

8 +
28

8 +
3

7

7 +
2

7 +
4

6

9 +
0

9 +
2

8

7

8 +
3

6 +
4

6

6 +
5

5

5 +
6

4

6 +
5

54

3

3

2

2

2

2

3 +
8

3 +
8

2 2

3

32

21

1

3 +
8

3 +
8

1

5 +
6

4 +
7

4 +
7

3 +
8

3 +
8

1

3 +
8

1

8 +
28

8 +
3

7

7 +
2

7 +
4

6

9

9 +
2

8

7

8 +
3

6 +
4

6

6 +
5

5

5 +
6

4

6 +
5

54

3

3

2

2

2

2

3 +
8

3 +
8

2 2

3

32

21

1

3 +
8

3 +
8

1

5 +
6

4 +
7

4 +
7

3 +
8

3 +
8

1

3 +
8

1

8 +
28

8 +
3

7

7 +
2

7 +
4

6

9

9 +
2

8

7

8 +
3

6 +
4

6

6 +
5

5

5 +
6

4

6 +
5

54

3

3

2

2

2

2

3 +
8

3 +
8

2 2

3

32

21

1

3 +
8

3 +
8

1

5 +
6

4 +
7

4 +
7

3 +
8

3 +
8

1

3 +
8

1

8 +
28

8 +
3

7

7 +
2

7 +
4

6

9

9 +
2

8

7

8 +
3

6 +
4

6

6 +
5

5

5 +
6

4

6 +
5

54

3

3

2

2

2

2

3 +
8

3 +
8

2 2

3

32

21

1

3 +
8

3 +
8

1

5 +
6

4 +
7

4 +
7

3 +
8

3 +
8

1

3 +
8

1

7

6

8

7

9

8

6

5

5

4

6

5

7

6

7

8

7

89

89

6

6 5

45

45

456

4567

5678 4

789

9 678

5456789

4

98

87

7

6

4567

9

9

9

9

98

6 7 8

9

8

9

9

9

8

54 6

8

8

7

7

6

9

7

7

8

7

6

6

5

5

6

54

3

3

2

2

2

2

3

3

2 2

3

32

21

1

3

3

1

5

4

4

3

3

1

3

1

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

A* (PSEUDOCODE)

‣ create a path with just start node and
enqueue into priority queue q

‣ while q is not empty and end node isn't
visited:
‣ p = q.dequeue()
‣ v = last node of p
‣ mark v as visited
‣ for each unvisited neighbor:
‣ create new path and append

neighbor
‣ enqueue new path into q with

priority pathLength + heuristic

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

COMPARING DIJKSTRA AND A*

‣ create a path with just start node and
enqueue into priority queue q

‣ while q is not empty and end node isn't
visited:
‣ p = q.dequeue()
‣ v = last node of p
‣ mark v as visited
‣ for each unvisited neighbor:
‣ create new path and append

neighbor
‣ enqueue new path into q with

priority pathLength

‣ create a path with just start node and
enqueue into priority queue q

‣ while q is not empty and end node isn't
visited:
‣ p = q.dequeue()
‣ v = last node of p
‣ mark v as visited
‣ for each unvisited neighbor:
‣ create new path and append

neighbor
‣ enqueue new path into q with

priority pathLength + heuristic

A*DIJKSTRA

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

COMPARING DIJKSTRA AND A*

‣ create a path with just start node and
enqueue into priority queue q

‣ while q is not empty and end node isn't
visited:
‣ p = q.dequeue()
‣ v = last node of p
‣ mark v as visited
‣ for each unvisited neighbor:
‣ create new path and append

neighbor
‣ enqueue new path into q with

priority pathLength

‣ create a path with just start node and
enqueue into priority queue q

‣ while q is not empty and end node isn't
visited:
‣ p = q.dequeue()
‣ v = last node of p
‣ mark v as visited
‣ for each unvisited neighbor:
‣ create new path and append

neighbor
‣ enqueue new path into q with

priority pathLength + heuristic

A*DIJKSTRA

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

COMPARING DIJKSTRA AND A*

‣ create a path with just start node and
enqueue into priority queue q

‣ while q is not empty and end node isn't
visited:
‣ p = q.dequeue()
‣ v = last node of p
‣ mark v as visited
‣ for each unvisited neighbor:
‣ create new path and append

neighbor
‣ enqueue new path into q with

priority pathLength

‣ create a path with just start node and
enqueue into priority queue q

‣ while q is not empty and end node isn't
visited:
‣ p = q.dequeue()
‣ v = last node of p
‣ mark v as visited
‣ for each unvisited neighbor:
‣ create new path and append

neighbor
‣ enqueue new path into q with

priority pathLength + 0

A*DIJKSTRA

YOU WANT YOUR HEURISTIC TO BE AS LARGE
AS POSSIBLE

BUT YOU NEVER WANT IT TO BE LARGER THAN
THE ACTUAL COST.

GOOGLE MAPS

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

WHY DOESN'T GOOGLE MAPS PRECOMPUTE DIRECTIONS?

▸ How many nodes are in the Google Maps graph?

▸ About 75 million

▸ How many sets of directions would they need to generate?

▸ N2

▸ How long would that take

▸ 6 x 1015 seconds

▸ Or... 190 million years

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

WHY DOESN'T GOOGLE MAPS PRECOMPUTE DIRECTIONS?

▸ How many nodes are in the Google Maps graph?

▸ About 75 million

▸ How many sets of directions would they need to generate?

▸ N2

▸ How long would that take

▸ 6 x 1015 seconds

▸ Or... 190 million years

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

WHY DOESN'T GOOGLE MAPS PRECOMPUTE DIRECTIONS?

▸ How many nodes are in the Google Maps graph?

▸ About 75 million

▸ How many sets of directions would they need to generate?

▸ N2

▸ How long would that take

▸ 6 x 1015 seconds

▸ Or... 190 million years

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

WHY DOESN'T GOOGLE MAPS PRECOMPUTE DIRECTIONS?

▸ How many nodes are in the Google Maps graph?

▸ About 75 million

▸ How many sets of directions would they need to generate?

▸ (roughly) N2

▸ How long would that take

▸ 6 x 1015 seconds

▸ Or... 190 million years

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

WHY DOESN'T GOOGLE MAPS PRECOMPUTE DIRECTIONS?

▸ How many nodes are in the Google Maps graph?

▸ About 75 million

▸ How many sets of directions would they need to generate?

▸ (roughly) N2

▸ How long would that take?

▸ 6 x 1015 seconds

▸ Or... 190 million years

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

WHY DOESN'T GOOGLE MAPS PRECOMPUTE DIRECTIONS?

▸ How many nodes are in the Google Maps graph?

▸ About 75 million

▸ How many sets of directions would they need to generate?

▸ (roughly) N2

▸ How long would that take?

▸ 6 x 1015 seconds

▸ Or... 190 million years

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

WHY DOESN'T GOOGLE MAPS PRECOMPUTE DIRECTIONS?

▸ How many nodes are in the Google Maps graph?

▸ About 75 million

▸ How many sets of directions would they need to generate?

▸ (roughly) N2

▸ How long would that take?

▸ 6 x 1015 seconds

▸ Or... 190 million years

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

WHAT HEURISTICS COULD GOOGLE USE?

▸ As the crow flies

▸ Calculate the straight-line distance from A to B, and divide by
the speed on the fastest highway

▸ Landmark heuristic

▸ Find the distance from A and B to a landmark, calculate the
difference (distance < abs(A - B))

▸ All of these and more?

▸ You can use multiple heuristics and choose the max

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

WHAT HEURISTICS COULD GOOGLE USE?

▸ As the crow flies

▸ Calculate the straight-line distance from A to B, and divide by
the speed on the fastest highway

▸ Landmark heuristic

▸ Find the distance from A and B to a landmark, calculate the
difference (distance < abs(A - B))

▸ All of these and more?

▸ You can use multiple heuristics and choose the max

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

WHAT HEURISTICS COULD GOOGLE USE?

▸ As the crow flies

▸ Calculate the straight-line distance from A to B, and divide by
the speed on the fastest highway

▸ Landmark heuristic

▸ Find the distance from A and B to a landmark, calculate the
difference (distance < abs(A - B))

▸ All of these and more?

▸ You can use multiple heuristics and choose the max

THE LIFE CHANGING MAGIC OF DIJKSTRA AND A*

WHAT HEURISTICS COULD GOOGLE USE?

▸ As the crow flies

▸ Calculate the straight-line distance from A to B, and divide by
the speed on the fastest highway

▸ Landmark heuristic

▸ Find the distance from A and B to a landmark, calculate the
difference (distance < abs(A - B))

▸ All of these and more?

▸ You can use multiple heuristics and choose the max

