
This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Keith Schwarz, Julie Zelenski, Jerry Cain, Eric Roberts, Mehran Sahami, Stuart Reges, Cynthia Lee, Marty Stepp, Ashley Taylor and others.

CS 106X, Lecture 10
Recursive Backtracking

reading:
Programming Abstractions in C++, Chapter 9

2

Plan For Today
• Ex. Printing Binary
• What is Recursive Backtracking?
• Ex. Dice Sums
• Announcements
• Ex. Subsets

3

Plan For Today
• Ex. Printing Binary
• What is Recursive Backtracking?
• Ex. Dice Sums
• Announcements
• Ex. Subsets

4

Exercise: printAllBinary
• Write a recursive function printAllBinary that accepts an

integer number of digits and prints all binary numbers that have
exactly that many digits, in ascending order, one per line.

– printAllBinary(2); printAllBinary(3);
00 000
01 001
10 010
11 011

100
101
110
111

printBinary

❑Wrapper? ❑Base Case? ❑Recursive case? ❑All inputs?

5

printAllBinary solution
void printAllBinary(int numDigits) {

printAllBinaryHelper(numDigits, "");
}

void printAllBinaryHelper(int digits, string soFar) {
if (digits == 0) {

cout << soFar << endl;
} else {

printAllBinaryHelper(digits - 1, soFar + "0");
printAllBinaryHelper(digits - 1, soFar + "1");

}
}

6

A tree of calls
• printAllBinary(2);

– This kind of diagram is called a call tree or decision tree.
– Think of each call as a choice or decision made by the algorithm:

• Should I choose 0 as the next digit?
• Should I choose 1 as the next digit?

digits soFar
2 ""

1 "0"

0 "00" 0 "01"

1 "1"

0 "10" 0 "11"

0 1

0 1 0 1

7

The base case
void printAllBinaryHelper(int digits, string soFar) {

if (digits == 0) {
cout << soFar << endl;

} else {
printAllBinaryHelper(digits - 1, soFar + "0");
printAllBinaryHelper(digits - 1, soFar + "1");

}
}

– The base case is where the code stops after doing its work.
• pAB(3) -> pAB(2) -> pAB(1) -> pAB(0)

– Each call should keep track of the work it has done.

– Base case should print the result of the work done by prior calls.
• Work is kept track of in some variable(s) - in this case, string soFar.

8

Plan For Today
• Ex. Printing Binary
• What is Recursive Backtracking?
• Ex. Dice Sums
• Announcements
• Ex. Subsets

9

Recursive Backtracking
• Recursive Backtracking: using recursion to explore solutions to a

problem and abandoning them if they are not suitable.
– Determine whether a solution exists
– Find a solution
– Find the best solution
– Count the number of solutions
– Print/find all the solutions

• Applications:
– Puzzle solving (Sudoku, Crosswords, etc.)
– Game playing (Chess, Solitaire, etc.)
– Constraint satisfaction problems (scheduling, matching, etc.)

10

The Recursion Checklist
qFind what information we need to keep track of.

What inputs/outputs are needed to solve the problem
at each step? Do we need a wrapper function?

qFind our base case(s). What are the simplest (non-
recursive) instance(s) of this problem?

qFind our recursive step. How can this problem be
solved in terms of one or more simpler instances of
the same problem that lead to a base case?

qEnsure every input is handled. Do we cover all
possible cases? Do we need to handle errors?

11

The Recursion Checklist
qFind what information we need to keep track of.

What inputs/outputs are needed to solve the problem
at each step? Do we need a wrapper function?

qFind our base case(s). What are the simplest (non-
recursive) instance(s) of this problem?

qFind our recursive step. How can this problem be
solved in terms of one or more simpler instances of
the same problem that lead to a base case?

qEnsure every input is handled. Do we cover all
possible cases? Do we need to handle errors?

12

The Backtracking Checklist
qFind what choice(s) we have at each step. What

different options are there for the next step?
For each valid choice:
qMake it and explore recursively. Pass the information

for a choice to the next recursive call(s).
qUndo it after exploring. Restore everything to the way

it was before making this choice.
qFind our base case(s). What should we do when we

are out of decisions?

13

printAllBinary solution
void printAllBinary(int numDigits) {

printAllBinaryHelper(numDigits, "");
}

void printAllBinaryHelper(int digits, string soFar) {
if (digits == 0) {

cout << soFar << endl;
} else {

printAllBinaryHelper(digits - 1, soFar + "0");
printAllBinaryHelper(digits - 1, soFar + "1");

}
}

❑Choose ❑Explore ❑Un-choose ❑Base case

14

Plan For Today
• Ex. Printing Binary
• What is Recursive Backtracking?
• Ex. Dice Sums
• Announcements
• Ex. Subsets

15

Exercise: Dice rolls
• Write a recursive function diceRoll that accepts an integer

representing a number of 6-sided dice to roll, and output all
possible combinations of values that could appear on the dice.

diceRoll(2); diceRoll(3);

– How is this problem recursive (self-similar)?

{1, 1}
{1, 2}
{1, 3}
{1, 4}
{1, 5}
{1, 6}
{2, 1}
{2, 2}
{2, 3}
{2, 4}
{2, 5}
{2, 6}

{3, 1}
{3, 2}
{3, 3}
{3, 4}
{3, 5}
{3, 6}
{4, 1}
{4, 2}
{4, 3}
{4, 4}
{4, 5}
{4, 6}

{5, 1}
{5, 2}
{5, 3}
{5, 4}
{5, 5}
{5, 6}
{6, 1}
{6, 2}
{6, 3}
{6, 4}
{6, 5}
{6, 6}

{1, 1, 1}
{1, 1, 2}
{1, 1, 3}
{1, 1, 4}
{1, 1, 5}
{1, 1, 6}
{1, 2, 1}
{1, 2, 2}

...
{6, 6, 4}
{6, 6, 5}
{6, 6, 6}

diceRoll

16

The Backtracking Checklist
qFind what choice(s) we have at each step. What

different options are there for the next step?
For each valid choice:
qMake it and explore recursively. Pass the information

for a choice to the next recursive call(s).
qUndo it after exploring. Restore everything to the way

it was before making this choice.
qFind our base case(s). What should we do when we

are out of decisions?

17

The Backtracking Checklist
qFind what choice(s) we have at each step. What

different options are there for the next step?
For each valid choice:
qMake it and explore recursively. Pass the information

for a choice to the next recursive call(s).
qUndo it after exploring. Restore everything to the way

it was before making this choice.
qFind our base case(s). What should we do when we

are out of decisions?

What die value should I
choose next?

18

The Backtracking Checklist
qFind what choice(s) we have at each step. What

different options are there for the next step?
For each valid choice:
qMake it and explore recursively. Pass the information

for a choice to the next recursive call(s).
qUndo it after exploring. Restore everything to the way

it was before making this choice.
qFind our base case(s). What should we do when we

are out of decisions?

19

The Backtracking Checklist
qFind what choice(s) we have at each step. What

different options are there for the next step?
For each valid choice:
qMake it and explore recursively. Pass the information

for a choice to the next recursive call(s).
qUndo it after exploring. Restore everything to the way

it was before making this choice.
qFind our base case(s). What should we do when we

are out of decisions?

We need to communicate
the dice chosen so far to
the next recursive call.

20

The Backtracking Checklist
qFind what choice(s) we have at each step. What

different options are there for the next step?
For each valid choice:
qMake it and explore recursively. Pass the information

for a choice to the next recursive call(s).
qUndo it after exploring. Restore everything to the way

it was before making this choice.
qFind our base case(s). What should we do when we

are out of decisions?

21

The Backtracking Checklist
qFind what choice(s) we have at each step. What

different options are there for the next step?
For each valid choice:
qMake it and explore recursively. Pass the information

for a choice to the next recursive call(s).
qUndo it after exploring. Restore everything to the way

it was before making this choice.
qFind our base case(s). What should we do when we

are out of decisions?

We need to be able to
remove the die we added

to our roll so far.

22

The Backtracking Checklist
qFind what choice(s) we have at each step. What

different options are there for the next step?
For each valid choice:
qMake it and explore recursively. Pass the information

for a choice to the next recursive call(s).
qUndo it after exploring. Restore everything to the way

it was before making this choice.
qFind our base case(s). What should we do when we

are out of decisions?

23

The Backtracking Checklist
qFind what choice(s) we have at each step. What

different options are there for the next step?
For each valid choice:
qMake it and explore recursively. Pass the information

for a choice to the next recursive call(s).
qUndo it after exploring. Restore everything to the way

it was before making this choice.
qFind our base case(s). What should we do when we

are out of decisions?

When we have no dice left
to choose, print them out.

24

Examining the problem
• We want to generate all possible sequences of values.

for (each possible first die value):
for (each possible second die value):

for (each possible third die value):
...

print!

– This is called a depth-first search

– You may think that for loops are the way to approach this problem.
• But how many loops are needed?

– How can we completely explore such a large search space?

25

A decision tree
chosen available

- 4 dice

1 3 dice

1, 1 2 dice

1, 1, 1 1 die

1, 1, 1, 1

1, 2 2 dice 1, 3 2 dice 1, 4 2 dice

2 3 dice

1, 1, 2 1 die 1, 1, 3 1 die

1, 1, 1, 2 1, 1, 3, 1 1, 1, 3, 2

1, 4, 1 1 die ...
......

...

... ...
... ...

value for first die?

value for second die?

value for third die?

diceRoll(4);

3 3 dice
...

26

diceRolls pseudocode
function diceRolls(dice):

if dice == 0:
nothing to do.

else:
// handle all roll values for a single die; let recursion do the rest.
for each die value i in range [1..6]:

choose that the current die will have value i.
diceRolls(dice-1). // explore the remaining dice.
un-choose the value i.

• How do we keep track of our choices?

27

diceRolls solution
// Prints all possible outcomes of rolling the given
// number of six-sided dice in {#, #, #} format.
void diceRolls(int dice) {

Vector<int> chosen;
diceRollHelper(dice, chosen);

}

// private recursive helper to implement diceRolls logic
void diceRollHelper(int dice, Vector<int>& chosen) {

if (dice == 0) {
cout << chosen << endl; // base case

} else {
for (int i = 1; i <= 6; i++) {

chosen.add(i); // choose
diceRollHelper(dice - 1, chosen); // explore
chosen.remove(chosen.size() - 1); // un-choose

}
}

}

28

Exercise: Dice roll sum
• Write a function diceSum similar to diceRoll, but it also accepts

a desired sum and prints only combinations that add up to exactly
that sum.

diceSum(2, 7); diceSum(3, 7);
{1, 1, 5}
{1, 2, 4}
{1, 3, 3}
{1, 4, 2}
{1, 5, 1}
{2, 1, 4}
{2, 2, 3}
{2, 3, 2}
{2, 4, 1}
{3, 1, 3}
{3, 2, 2}
{3, 3, 1}
{4, 1, 2}
{4, 2, 1}
{5, 1, 1}

{1, 6}
{2, 5}
{3, 4}
{4, 3}
{5, 2}
{6, 1}

diceSum

29

The Backtracking Checklist
qFind what choice(s) we have at each step. What

different options are there for the next step?
For each valid choice:
qMake it and explore recursively. Pass the information

for a choice to the next recursive call(s).
qUndo it after exploring. Restore everything to the way

it was before making this choice.
qFind our base case(s). What should we do when we

are out of decisions?

30

The Backtracking Checklist
qFind what choice(s) we have at each step. What

different options are there for the next step?
For each valid choice:
qMake it and explore recursively. Pass the information

for a choice to the next recursive call(s).
qUndo it after exploring. Restore everything to the way

it was before making this choice.
qFind our base case(s). What should we do when we

are out of decisions?

When we have no dice left
to choose, print them out

only if they equal our sum.

31

Minimal modification
void diceSum(int dice, int desiredSum) {

Vector<int> chosen;
diceSumHelper(dice, desiredSum, chosen);

}

void diceSumHelper(int dice, int desiredSum, Vector<int>& chosen) {
if (dice == 0) {

if (sumAll(chosen) == desiredSum) {
cout << chosen << endl; // base case

}
} else {

for (int i = 1; i <= 6; i++) {
chosen.add(i); // choose
diceSumHelper(dice - 1, desiredSum, chosen); // explore
chosen.remove(chosen.size() - 1); // un-choose

}
}

}

int sumAll(const Vector<int>& v) {
int sum = 0;
for (int k : v) { sum += k; }
return sum;

}

32

Wasteful decision tree
chosen available desired sum

- 3 dice 5

1 2 dice

1, 1 1 die

1, 1, 1

1, 2 1 die 1, 3 1 die 1, 4 1 die

6 2 dice

...

2 2 dice 3 2 dice 4 2 dice 5 2 dice

1, 5 1 die 1, 6 1 die

1, 1, 2 1, 1, 3 1, 1, 4 1, 1, 5 1, 1, 6

1, 6, 1 1, 6, 2

..

.

diceSum(3, 5);

33

Optimizations
• We need not visit every branch of the decision tree.

– Some branches are clearly not going to lead to success.
– We can preemptively stop, or prune, these branches.

• Inefficiencies in our dice sum algorithm:
– Sometimes the current sum is already too high.

• (Even rolling 1 for all remaining dice would exceed the desired sum.)

– Sometimes the current sum is already too low.
• (Even rolling 6 for all remaining dice would fall short of the desired sum.)

– The code must re-compute the sum many times.
• (1+1+1 = ..., 1+1+2 = ..., 1+1+3 = ..., 1+1+4 = ..., ...)

34

diceSum solution
void diceSum(int dice, int desiredSum) {

Vector<int> chosen;
diceSumHelper(dice, 0, desiredSum, chosen);

}

void diceSumHelper(int dice, int sum, int desiredSum, Vector<int>& chosen) {
if (dice == 0) {

if (sum == desiredSum) {
cout << chosen << endl; // base case

}
} else if (sum + 1*dice <= desiredSum

&& sum + 6*dice >= desiredSum) {
for (int i = 1; i <= 6; i++) {

chosen.add(i); // choose
diceSumHelper(dice - 1, sum + i, desiredSum, chosen); // explore
chosen.remove(chosen.size() - 1); // un-choose

}
}

}

35

For you to think about...
• How would you modify diceSum so that it prints only unique

combinations of dice, ignoring order?
– (e.g. don't print both {1, 1, 5} and {1, 5, 1})

diceSum2(2, 7); diceSum2(3, 7);

{1, 1, 5}
{1, 2, 4}
{1, 3, 3}
{1, 4, 2}
{1, 5, 1}
{2, 1, 4}
{2, 2, 3}
{2, 3, 2}
{2, 4, 1}
{3, 1, 3}
{3, 2, 2}
{3, 3, 1}
{4, 1, 2}
{4, 2, 1}
{5, 1, 1}

{1, 6}
{2, 5}
{3, 4}
{4, 3}
{5, 2}
{6, 1}

36

diceSum solution
void diceSum(int dice, int desiredSum) {

Vector<int> chosen;
diceSumHelper(dice, 0, desiredSum, chosen, 1);

}

void diceSumHelper(int dice, int sum, int desiredSum, Vector<int>& chosen,
int minDieValue) {
if (dice == 0) {

if (sum == desiredSum) {
cout << chosen << endl; // base case

}
} else if (sum + 1*dice <= desiredSum

&& sum + 6*dice >= desiredSum) {
for (int i = minDieValue; i <= 6; i++) {

chosen.add(i); // choose
diceSumHelper(dice - 1, sum + i, desiredSum, chosen, i);//explore
chosen.remove(chosen.size() - 1); // un-choose

}
}

}

37

Plan For Today
• Ex. Printing Binary
• What is Recursive Backtracking?
• Ex. Dice Sums
• Announcements
• Ex. Subsets

38

Announcements
• Pair Programming on HW4

• Pair programming means that two people work together
on an assignment, completely.

• Pair programmers must never be working on the
assignment independently, and should both be looking at
the same screen, with one of the students typing (they
should take turns).

• Students may ask conceptual questions in the LaIR and on
Piazza independently, but if you are in a pair you must get
help on the code together.

• If one student has taken the course before, there can be
no overlapping code from that student's prior work unless
they worked on it with the exact same people then as
now.

39

Plan For Today
• Ex. Printing Binary
• What is Recursive Backtracking?
• Ex. Dice Sums
• Announcements
• Ex. Subsets

40

Exercise: subsets
• Write a function subsets that finds every possible sub-list of a

given vector. A sub-list of a vector V contains ≥ 0 of V's elements.

– Example: if V is {Jane, Bob, Matt, Sara},
then the call of subsets(V); prints:

{Jane, Bob, Matt, Sara} {Bob, Matt, Sara}
{Jane, Bob, Matt} {Bob, Matt}
{Jane, Bob, Sara} {Bob, Sara}
{Jane, Bob} {Bob}
{Jane, Matt, Sara} {Matt, Sara}
{Jane, Matt} {Matt}
{Jane, Sara} {Sara}
{Jane} {}

– You can print the subsets out in any order, one per line.
• What are the "choices" in this problem? (choose, explore)

printSubVectors

41

Decision tree?
chosen available
{} Jane, Bob,

Matt, Sara

{Jane} Bob, Matt,
Sara

{Jane,
Bob}

Matt,
Sara

{Jane,
Matt}

Bob,
Sara

{Jane,
Sara}

Bob,
Matt

...

{Bob} Jane, Matt,
Sara

...

{Matt} J
S

...

{Bob,
Jane}

Matt,
Sara

whom to include first?

Jane Bob Matt

whom to include second?

Bob Matt Sara

42

Wrong decision tree

Q: Why isn't this the right decision tree for this problem?
A. It does not actually end up finding every possible subset.
B. It does find all subset, but it finds them in the wrong order.
C. It does find all subset, but it finds them multiple times.
D. None of the above

chosen available
{} Jane, Bob,

Matt, Sara

{Jane} Bob, Matt,
Sara

{Bob} Jane, Matt,
Sara

... ...

whom to include first?

Jane Bob Matt

whom to include second?

{Matt} J
S

43

Better decision tree

– Each decision is: "Include Jane or not?" ... "Include Bob or not?" ...
• The order of people chosen does not matter; only the membership.

chosen available
{} Jane, Bob,

Matt, Sara

{Jane} Bob, Matt,
Sara

{Jane
Bob}

Matt,
Sara

{Jane} Matt,
Sara

{} Bob, Matt,
Sara

{Jane
Bob,
Matt}

Sara {Jane,
Bob}

Sara

{Bob} Matt,
Sara

{} Matt,
Sara

include Jane?
yes no

yes no

yes no

include Bob?

include
Matt?

yes no

include Bob?

... ...

...

44

The Backtracking Checklist
qFind what choice(s) we have at each step. What

different options are there for the next step?
For each valid choice:
qMake it and explore recursively. Pass the information

for a choice to the next recursive call(s).
qUndo it after exploring. Restore everything to the way

it was before making this choice.
qFind our base case(s). What should we do when we

are out of decisions?

Should I include the next
person in the subset?

45

The Backtracking Checklist
qFind what choice(s) we have at each step. What

different options are there for the next step?
For each valid choice:
qMake it and explore recursively. Pass the information

for a choice to the next recursive call(s).
qUndo it after exploring. Restore everything to the way

it was before making this choice.
qFind our base case(s). What should we do when we

are out of decisions?

46

The Backtracking Checklist
qFind what choice(s) we have at each step. What

different options are there for the next step?
For each valid choice:
qMake it and explore recursively. Pass the information

for a choice to the next recursive call(s).
qUndo it after exploring. Restore everything to the way

it was before making this choice.
qFind our base case(s). What should we do when we

are out of decisions?

Find all subsets with this
choice made.

47

The Backtracking Checklist
qFind what choice(s) we have at each step. What

different options are there for the next step?
For each valid choice:
qMake it and explore recursively. Pass the information

for a choice to the next recursive call(s).
qUndo it after exploring. Restore everything to the way

it was before making this choice.
qFind our base case(s). What should we do when we

are out of decisions?

48

The Backtracking Checklist
qFind what choice(s) we have at each step. What

different options are there for the next step?
For each valid choice:
qMake it and explore recursively. Pass the information

for a choice to the next recursive call(s).
qUndo it after exploring. Restore everything to the way

it was before making this choice.
qFind our base case(s). What should we do when we

are out of decisions?

Make sure the chosen set
is the same as it was

before.

49

The Backtracking Checklist
qFind what choice(s) we have at each step. What

different options are there for the next step?
For each valid choice:
qMake it and explore recursively. Pass the information

for a choice to the next recursive call(s).
qUndo it after exploring. Restore everything to the way

it was before making this choice.
qFind our base case(s). What should we do when we

are out of decisions?

50

The Backtracking Checklist
qFind what choice(s) we have at each step. What

different options are there for the next step?
For each valid choice:
qMake it and explore recursively. Pass the information

for a choice to the next recursive call(s).
qUndo it after exploring. Restore everything to the way

it was before making this choice.
qFind our base case(s). What should we do when we

are out of decisions?

When we have no choices
left, print out the subset.

51

sublists solution
void subSets(const Set<string>& masterSet) {

Set<string> chosen;
listSubsetsRec(masterSet, chosen);

}

void listSubsetsRec(const Set<string>& masterSet, const Set<string>& used) {
if (masterSet.isEmpty()) {

cout << used << endl;
} else {

string element = masterSet.first();

listSubsetsRec(masterSet - element, used); // Without
listSubsetsRec(masterSet - element, used + element); // With

}
}

52

sublists solution
void subSets(Set<string>& masterSet) {

Set<string> chosen;
listSubsetsRec(masterSet, chosen);

}

void listSubsetsRec(Set<string>& masterSet, Set<string>& used) {
if (masterSet.isEmpty()) {

cout << used << endl;
} else {

string element = masterSet.first();

masterSet.remove(element);
listSubsetsRec(masterSet, used); // Without

used.add(element);
listSubsetsRec(masterSet, used); // With
masterSet.add(element);
used.remove(element);

}
}

53

Recap
• Ex. Printing Binary
• What is Recursive Backtracking?
• Ex. Dice Sums
• Announcements
• Ex. Subsets

Next time: more backtracking

54

Overflow

55

Exercise: Permute Vector
• Write a function permute that accepts a Vector of strings as a

parameter and outputs all possible rearrangements of the strings in
that vector. The arrangements may be output in any order.

– Example: if v contains {"a", "b", "c", "d"}, your function
outputs these permutations:

{a, b, c, d} {b, a, c, d} {c, a, b, d} {d, a, b, c}
{a, b, d, c} {b, a, d, c} {c, a, d, b} {d, a, c, b}
{a, c, b, d} {b, c, a, d} {c, b, a, d} {d, b, a, c}
{a, c, d, b} {b, c, d, a} {c, b, d, a} {d, b, c, a}
{a, d, b, c} {b, d, a, c} {c, d, a, b} {d, c, a, b}
{a, d, c, b} {b, d, c, a} {c, d, b, a} {d, c, b, a}

56

Permute solution
// Outputs all permutations of the given vector.
void permute(Vector<string>& v) {

Vector<string> chosen;
permuteHelper(v, chosen);

}

void permuteHelper(Vector<string>& v, Vector<string>& chosen) {
if (v.isEmpty()) {

cout << chosen << endl; // base case
} else {

for (int i = 0; i < v.size(); i++) {
string s = v[i];
v.remove(i);
chosen.add(s); // choose
permuteHelper(v, chosen); // explore
chosen.remove(chosen.size() - 1); // un-choose
v.insert(i, s);

}
}

}

