CS 106X, Lecture 22
Graphs; BFS; DFS

reading:

Programming Abstractions in C++, Chapter 18
Plan For Today

- **Recap**: Graphs
- **Practice**: Twitter Influence
- Depth-First Search (DFS)
- Announcements
- Breadth-First Search (BFS)
Plan For Today

• **Recap:** Graphs
• **Practice:** Twitter Influence
• Depth-First Search (DFS)
• Announcements
• Breadth-First Search (BFS)
Graphs

A graph consists of a set of **nodes** connected by **edges**.

Graphs can model:
- Sites and links on the web
- Disease outbreaks
- Social networks
- Geographies
- Task and dependency graphs
- and more…
A graph consists of a set of **nodes** connected by **edges**.

Nodes: degree (number of connected edges)
Nodes: in-degree (directed, number of in-edges)
Nodes: out-degree (directed, number of out-edges)

Path: sequence of nodes/edges from one node to another
Path: node x is reachable from node y if a path exists from y to x.
Path: a **cycle** is a path that starts and ends at the same node
Path: a **loop** is an edge that connects a node to itself
A graph consists of a set of **nodes** connected by **edges**.

Nodes: degree (# connected edges)

Nodes: in-degree (directed, # in-edges)

Nodes: out-degree (directed, # out-edges)

Path: sequence of nodes/edges from one node to another

Path: node \(x \) is reachable from node \(y \) if a path exists from \(y \) to \(x \).

Path: a **cycle** is a path that starts and ends at the same node

Path: a **loop** is an edge that connects a node to itself
A graph consists of a set of **nodes** connected by **edges**.

Nodes: degree (# connected edges)
Nodes: in-degree (directed, # in-edges)
Nodes: out-degree (directed, # out-edges)

Path: sequence of nodes/edges from one node to another
Path: node \(x \) is reachable from node \(y \) if a path exists from \(y \) to \(x \).
Path: a **cycle** is a path that starts and ends at the same node
Path: a **loop** is an edge that connects a node to itself
A graph consists of a set of **nodes** connected by **edges**.

Nodes: degree (# connected edges)

Nodes: in-degree (directed, # in-edges)

Nodes: out-degree (directed, # out-edges)

Path: sequence of nodes/edges from one node to another

Path: node x is reachable from node y if a path exists from y to x.

Path: a **cycle** is a path that starts and ends at the same node

Path: a **loop** is an edge that connects a node to itself
A graph consists of a set of **nodes** connected by **edges**.

Nodes: *degree* (# connected edges)
Nodes: *in-degree* (directed, # in-edges)
Nodes: *out-degree* (directed, # out-edges)

Path: sequence of nodes/edges from one node to another
Path: node x is reachable from node y if a path exists from y to x.
Path: a *cycle* is a path that starts and ends at the same node
Path: a *loop* is an edge that connects a node to itself
Graphs

A graph consists of a set of **nodes** connected by **edges**.

Nodes: degree (# connected edges)
Nodes: in-degree (directed, # in-edges)
Nodes: out-degree (directed, # out-edges)

Path: sequence of nodes/edges from one node to another
Path: node x is reachable from node y if a path exists from y to x.
Path: a cycle is a path that starts and ends at the same node
Path: a loop is an edge that connects a node to itself
Graphs

A graph consists of a set of **nodes** connected by **edges**.

Nodes: degree (# connected edges)
Nodes: in-degree (directed, # in-edges)
Nodes: out-degree (directed, # out-edges)

Path: sequence of nodes/edges from one node to another
Path: node x is reachable from node y if a path exists from y to x.
Path: a *cycle* is a path that starts and ends at the same node
Path: a *loop* is an edge that connects a node to itself
A graph consists of a set of nodes connected by edges.

Nodes: degree (# connected edges)
Nodes: in-degree (directed, # in-edges)
Nodes: out-degree (directed, # out-edges)

Path: sequence of nodes/edges from one node to another
Path: node x is reachable from node y if a path exists from y to x.
Path: a cycle is a path that starts and ends at the same node
Path: a loop is an edge that connects a node to itself
A graph is **connected** if every node is reachable from every other node.
A graph is **complete** if every node has a direct edge to every other node.
Graph Properties

A graph is **acyclic** if it does not contain any cycles.
A graph is **directed** if its edges have direction, or **undirected** if its edges do not have direction (aka are bidirectional).
Graph Properties

- Connected or unconnected
- Acyclic
- Directed or undirected
- Weighted or unweighted
- Complete
Plan For Today

• Recap: Graphs

• Practice: Twitter Influence

• Depth-First Search (DFS)

• Announcements

• Breadth-First Search (BFS)
Twitter Influence

• Twitter lets a user follow another user to see their posts.
• Following is directional (e.g. I can follow you but you don’t have to follow me back 😞)
• Let’s define being influential as having a high number of followers-of-followers.
 – Reasoning: doesn’t just matter how many people follow you, but whether the people who follow you reach a large audience.

• Write a function mostInfluential that reads a file of Twitter relationships and outputs the most influential user.

https://about.twitter.com/en_us/company/brand-resources.html
BasicGraph members

```cpp
#include "basicgraph.h" // a directed, weighted graph
```

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>g.addEdge(v1, v2);</code></td>
<td>adds an edge between two vertexes</td>
</tr>
<tr>
<td><code>g.addVertex(name);</code></td>
<td>adds a vertex to the graph</td>
</tr>
<tr>
<td><code>g.clear();</code></td>
<td>removes all vertexes/edges from the graph</td>
</tr>
<tr>
<td><code>g.getEdgeSet()</code></td>
<td>returns all edges, or all edges that start at <code>v</code>, as a Set of pointers</td>
</tr>
<tr>
<td><code>g.getEdgeSet(v)</code></td>
<td></td>
</tr>
<tr>
<td><code>g.getNeighbors(v)</code></td>
<td>returns a set of all vertices that <code>v</code> has an edge to</td>
</tr>
<tr>
<td><code>g.getVertex(name)</code></td>
<td>returns pointer to vertex with the given name</td>
</tr>
<tr>
<td><code>g.getVertexSet()</code></td>
<td>returns a set of all vertexes</td>
</tr>
<tr>
<td><code>g.isNeighbor(v1, v2)</code></td>
<td>returns true if there is an edge from vertex <code>v1</code> to <code>v2</code></td>
</tr>
<tr>
<td><code>g.isEmpty()</code></td>
<td>returns true if queue contains no vertexes/edges</td>
</tr>
<tr>
<td><code>g.removeEdge(v1, v2);</code></td>
<td>removes an edge from the graph</td>
</tr>
<tr>
<td><code>g.removeVertex(name);</code></td>
<td>removes a vertex from the graph</td>
</tr>
<tr>
<td><code>g.size()</code></td>
<td>returns the number of vertexes in the graph</td>
</tr>
<tr>
<td><code>g.toString()</code></td>
<td>returns a string such as "{a, b, c, a -> b}"</td>
</tr>
</tbody>
</table>
Plan For Today

- **Recap**: Graphs
- **Practice**: Twitter Influence
- **Depth-First Search (DFS)**
- **Announcements**
- **Breadth-First Search (BFS)**
Searching for paths

• Searching for a path from one vertex to another:
 – Sometimes, we just want any path (or want to know there is a path).
 – Sometimes, we want to minimize path length (# of edges).
 – Sometimes, we want to minimize path cost (sum of edge weights).
Finding Paths

• Easiest way: Depth-First Search (DFS)
 – Recursive backtracking!

• Finds a path between two nodes if it exists
 – Or can find all the nodes \textit{reachable} from a node
 • Where can I travel to starting in San Francisco?
 • If all my friends (and their friends, and so on) share my post, how many will eventually see it?
Depth-first search (18.4)

- **depth-first search** (DFS): Finds a path between two vertices by exploring each possible path as far as possible before backtracking.
 - Often implemented recursively.
 - Many graph algorithms involve *visiting* or *marking* vertices.

- DFS from *a* to *h* (assuming A-Z order) visits:
 - *a*
 - *b*
 - *e*
 - *f*
 - *c*
 - *i*
 - *d*
 - *g*
 - *h*
 - path found: \{a, d, g, h\}
DFS

Mark current as visited
Explore all the unvisited nodes from this node
DFS

Mark current as visited
Explore all the unvisited nodes from this node
DFS

Mark current as visited
Explore all the unvisited nodes from this node
DFS

Mark current as visited
Explore all the unvisited nodes from this node
DFS

Mark current as visited
Explore all the unvisited nodes from this node
DFS

Mark current as visited
Explore all the unvisited nodes from this node
DFS

Mark current as visited
Explore all the unvisited nodes from this node
DFS

Mark current as visited
Explore all the unvisited nodes from this node
DFS

Mark current as visited
Explore all the unvisited nodes from this node
DFS

Mark current as visited
Explore all the unvisited nodes from this node
DFS

Mark current as visited
Explore all the unvisited nodes from this node
Mark current as visited
Explore all the unvisited nodes from this node
DFS

Mark current as visited
Explore all the unvisited nodes from this node
DFS

Mark current as visited
Explore all the unvisited nodes from this node
DFS

Mark current as visited
Explore all the unvisited nodes from this node
DFS

Mark current as visited
Explore all the unvisited nodes from this node
DFS

Mark current as visited
Explore all the unvisited nodes from this node
DFS

Mark current as visited
Explore all the unvisited nodes from this node
DFS

Mark current as visited
Explore all the unvisited nodes from this node
DFS

Mark current as visited
Explore all the unvisited nodes from this node
Mark current as visited
Explore all the unvisited nodes from this node
DFS

Mark current as visited
Explore all the unvisited nodes from this node
DFS

Mark current as visited
Explore all the unvisited nodes from this node
Mark current as visited
Explore all the unvisited nodes from this node
DFS

Mark current as visited
Explore all the unvisited nodes from this node
DFS

Mark current as visited
Explore all the unvisited nodes from this node
DFS

Mark current as visited
Explore all the unvisited nodes from this node
DFS

Mark current as visited
Explore all the unvisited nodes from this node
DFS Details

• In an n-node, m-edge graph, takes $O(m + n)$ time with an adjacency list
 – Visit each edge once, visit each node at most once

• Pseudocode:

  ```
  dfs from $v_1$:
  mark $v_1$ as seen.
  for each of $v_1$'s unvisited neighbors $n$:
  dfs($n$)
  ```

• How could we modify the pseudocode to look for a specific path?
DFS that finds path

defs from \(v_1 \) to \(v_2 \):
 mark \(v_1 \) as \textit{visited}, and \textbf{add to path}.
 perform a \texttt{dfs} from each of \(v_1 \)'s
 unvisited neighbors \(n \) to \(v_2 \):
 if \texttt{dfs}(\(n, v_2 \)) succeeds: a path is found! yay!
 if all neighbors fail: \textbf{remove} \(v_1 \) \textbf{from path}.

- To retrieve the DFS path found, pass a collection parameter to each
 call and choose-explore-unchoose.
DFS observations

- **discovery**: DFS is guaranteed to find a path if one exists.

- **retrieval**: It is easy to retrieve exactly what the path is (the sequence of edges taken) if we find it
 - choose - explore - unchoose

- **optimality**: not optimal. DFS is guaranteed to find a path, not necessarily the best/shortest path
 - Example: dfs(a, i) returns {a, b, e, f, c, i} rather than {a, d, h, i}.

![Graph diagram](image)
Plan For Today

- Recap: Graphs
- Practice: Twitter Influence
- Depth-First Search (DFS)
- Announcements
- Breadth-First Search (BFS)
Announcements

• Assignment 7 will go out this Friday, is due Wed. after break
 – Short graphs assignment (Google Maps!), implementing algorithms from this week
• Assignment 8 will go out the Wed. after break, is due the last day of class (Fri)
 – Graphs and inheritance assignment (Excel!)
Plan For Today

- **Recap**: Graphs
- **Practice**: Twitter Influence
- **Depth-First Search (DFS)**
- **Announcements**
- **Breadth-First Search (BFS)**
Finding **Shortest** Paths

- We can find paths between two nodes, but how can we find the **shortest** path?
 - Fewest number of steps to complete a task?
 - Least amount of edits between two words?
- When have we solved this problem before?
Breadth-First Search (BFS)

- Idea: processing a node involves knowing we need to visit all its neighbors (just like DFS)
- Need to keep a TODO list of nodes to process
Breadth-First Search (BFS)

• Keep a Queue of nodes as our TODO list
• Idea: dequeue a node, enqueue all its neighbors
• Still will return the same nodes as reachable, just might have shorter paths
BFS

Dequeue a node add all its unseen neighbors to the queue

queue: a
Dequeue a node
add all its unseen neighbors to the queue

queue: e, g
BFS

Dequeue a node add all its unseen neighbors to the queue

queue: e, g
BFS

Dequeue a node
add all its unseen neighbors to the queue

queue: g, f
queue: g, f

Dequeue a node
add all its unseen
neighbors to the queue
BFS

queue: f, h

Dequeue a node and add all its unseen neighbors to the queue
Dequeue a node and add all its unseen neighbors to the queue.

queue: f, h
BFS

Dequeue a node add all its unseen neighbors to the queue

queue: h
BFS

Dequeue a node
add all its unseen neighbors to the queue

queue: h
Dequeue a node add all its unseen neighbors to the queue

queue: i
BFS

Dequeue a node
add all its unseen neighbors to the queue

queue: i
BFS

Dequeue a node add all its unseen neighbors to the queue

queue: c
BFS

Dequeue a node add all its unseen neighbors to the queue

queue: c
BFS

Dequeue a node and add all its unseen neighbors to the queue

queue: c
BFS Details

• In an \(n \)-node, \(m \)-edge graph, takes \(O(m + n) \) time with an adjacency list

 – Visit each edge once, visit each node at most once

\textbf{bfs} from \(v_1 \) to \(v_2 \):

 create a \textit{queue} of vertexes to visit,

 initially storing just \(v_1 \).

mark \(v_1 \) as \textit{visited}.

while \textit{queue} is not empty and \(v_2 \) is not seen:

 dequeue a vertex \(v \) from it,

 mark that vertex \(v \) as \textit{visited},

 and add each unvisited neighbor \(n \) of \(v \) to the \textit{queue}.

• How could we modify the pseudocode to look for a specific path?
BFS observations

• **optimality:**
 – always finds the shortest path (fewest edges).
 – in unweighted graphs, finds optimal cost path.
 – In weighted graphs, *not* always optimal cost.

• **retrieval:** harder to reconstruct the actual sequence of vertices or edges in the path once you find it
 – conceptually, BFS is exploring many possible paths in parallel, so it's not easy to store a path array/list in progress
 – solution: We can keep track of the path by storing predecessors for each vertex (each vertex can store a reference to a *previous* vertex).

• DFS uses less memory than BFS, easier to reconstruct the path once found; but DFS does not always find shortest path. BFS does.
Recap

- Recap: Graphs
- Practice: Twitter Influence
- Depth-First Search (DFS)
- Announcements
- Breadth-First Search (BFS)

Next time: more graph searching algorithms
Overflow
BFS that finds path

bfs from v_1 to v_2:
- create a *queue* of vertexes to visit, initially storing just v_1.
- mark v_1 as **visited**.

while *queue* is not empty and v_2 is not seen:
- dequeue a vertex v from it,
- mark that vertex v as **visited**,
- and add each unvisited neighbor n of v to the *queue*,
- while setting n's **previous** to v.