
This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Keith Schwarz, Julie Zelenski, Jerry Cain, Eric Roberts, Mehran Sahami, Stuart Reges, Cynthia Lee, Marty Stepp, Ashley Taylor and others.

CS 106X, Lecture 4
Vectors and Big-O

reading:
Programming Abstractions in C++, Chapter 5.1, 10

2

Plan For Today
• Recap: C++ Streams and Grid
• ADTs: Vector
• Announcements
• Efficiency and Big-O

3

Plan For Today
• Recap: C++ Streams and Grid
• ADTs: Vector
• Announcements
• Efficiency and Big-O

4

What is a stream?
• An input stream lets you get data from a source (like user input, a

file, a webpage, etc.) and read it in your program.
• An output stream lets you take data from your program and output

it to a source (like the console, a file, etc.).

5

Reading In A File

1.Open the file for reading
2.Read the file, one chunk at a time
3.Close the file

6

Reading In A File

ifstream infile;
promptUserForFile(infile, "Enter a file name: ");

string line;
while (getline(infile, line)) {

cout << line << endl;
}
infile.close();

The animal I really dig,
Above all others is the pig.
Pigs are noble. Pigs are clever,
Pigs are courteous. However,...
-Roald Dahl, ”The Three Little Pigs"

7

Writing To A File
// Open the file for writing
ofstream outfile;
promptUserForFile(outfile, "Enter a file name: ");

// Write to the file
string word = "my cool string";
int x = 3;
outfile << word << x;

// Close the file
outfile.close();

8

Generic Streams
void outputUserData(ostream& outputStream, string name,
int score, double health) {

outputStream << name << endl;
outputStream << score << endl;
...

}

int main() {
...
outputUserData(cout, name, score, health);
if (getYesOrNo("Save to file? ")) {

outputUserData(outfile, name, score, health);
}

}

9

Grid members (5.1)*
Grid<type> name(r, c);
Grid<type> name;

create grid with given number of rows/cols;
empty 0x0 grid if omitted

g[r][c] or g.get(r, c) returns value at given row/col
g.fill(value); set every cell to store the given value
g.inBounds(r, c) returns true if given position is in the grid
g.numCols() or g.width() returns number of columns
g.numRows() or g.height() returns number of rows
g.resize(nRows, nCols); resizes grid to new size, discarding old contents
g[r][c] = value; or
g.set(r, c, value);

stores value at given row/col

g.toString() returns a string representation of the grid
such as "{{3, 42}, {-7, 1}, {5, 19}}"

ostr << g prints, e.g. {{3, 42}, {-7, 1}, {5, 19}}

* (a partial list; see http://stanford.edu/~stepp/cppdoc/)

http://stanford.edu/~stepp/cppdoc/

10

Const parameters
• What if you want to avoid copying a large variable but don't want to

change it?
• Use the const keyword to indicate that the parameter won't be

changed
- Usually used with strings and collections
- Passing in a non-variable (e.g. printString("hello")) does work
void printString(const string& str) {

cout << "I will print this string" << endl;
cout << str << endl;

}

int main() {
printString("This could be a really really long

string");
}

11

NEW: Constants
• Use the const keyword with variables to make them constants at

the top of your program file.

const int NUM_TURNS = 4;

int main() {
... // reference constant here

}

void otherFunc() {
... // reference constant here

}

12

STL vs. Stanford
• collection: an object that stores data; a.k.a. "data structure"

– the objects stored are called elements.

• Standard Template Library (STL):
C++ built in standard library of collections.
– vector, map, list, ...
– Powerful but somewhat hard to use.

• Stanford C++ library (SPL):
Custom library of collections made for use in CS 106B/X.
– Vector, Grid, Stack, Queue, Set, Map, ...
– Similar to STL, but simpler interface and error messages.

13

Grid members (5.1)*
Grid<type> name(r, c);
Grid<type> name;

create grid with given number of rows/cols;
empty 0x0 grid if omitted

g[r][c] or g.get(r, c) returns value at given row/col
g.fill(value); set every cell to store the given value
g.inBounds(r, c) returns true if given position is in the grid
g.numCols() or g.width() returns number of columns
g.numRows() or g.height() returns number of rows
g.resize(nRows, nCols); resizes grid to new size, discarding old contents
g[r][c] = value; or
g.set(r, c, value);

stores value at given row/col

g.toString() returns a string representation of the grid

ostr << g Prints a string representation of the grid

* (a partial list; see http://stanford.edu/~stepp/cppdoc/)

http://stanford.edu/~stepp/cppdoc/

14

SparseGrid members*
SparseGrid<type> name(r, c);
SparseGrid<type> name;

create grid with given number of rows/cols;
empty 0x0 grid if omitted

g[r][c] or g.get(r, c) returns value at given row/col
g.fill(value); set every cell to store the given value
g.inBounds(r, c) returns true if given position is in the grid
g.numCols() or g.width() returns number of columns
g.numRows() or g.height() returns number of rows
g.resize(nRows, nCols); resizes grid to new size, discarding old contents
g[r][c] = value; or
g.set(r, c, value);

stores value at given row/col

g.toString() returns a string representation of the grid.

ostr << g Prints a string representation of the grid.

* (a partial list; see http://stanford.edu/~stepp/cppdoc/)

http://stanford.edu/~stepp/cppdoc/

15

Abstract data types (ADTs)
• abstract data type (ADT): A specification of a collection of data

and the operations that can be performed on it.
– Describes what a collection can do, not how it does it.
– We could say that both Grid and SparseGrid implement the

operations of the abstract data type called "grid".
• other examples of ADTs: stack, queue, set, map, graph

• We don't always know exactly how a given collection is
implemented internally, and we don't need to.
– We just need to understand the idea of the collection and what

operations it can perform.

16

Plan For Today
• Recap: C++ Streams and Grid
• ADTs: Vector
• Announcements
• Efficiency and Big-O

17

Vectors (Lists)
#include "vector.h"

• vector (aka list): a collection of elements with 0-based indexes
– like a dynamically-resizing array (Java ArrayList or Python list)

– Include the type of elements in the <> brackets

// initialize a vector containing 5 integers
// index 0 1 2 3 4
Vector<int> nums {42, 17, -6, 0, 28};

Vector<string> names; // {}
names.add("Nick"); // {"Nick"}
names.add("Zach"); // {"Nick", "Zach"}
names.insert(0, "Ed"); // {"Ed", "Nick", "Zach"}

18

Why not arrays?
// actual arrays in C++ are mostly awful
int nums[5] {42, 17, -6, 0, 28};

• Arrays have fixed size and cannot be easily resized.
– In C++, an array doesn't even know its size. (no .length field)

• C++ lets you index out of the array bounds (garbage memory)
without necessarily crashing or warning.

• An array does not support many operations that you'd want:
– inserting/deleting elements into the front/middle/back of the array,

reversing, sorting the elements, searching for a given value ...

index 0 1 2 3 4
value 42 17 -6 0 28

19

Vector members (5.1)
v.add(value); or
v += value; or
v += v1, v2, ..., vN;

appends value(s) at end of vector

v.clear(); removes all elements
v[i] or v.get(i) returns the value at given index
v.insert(i, value); inserts given value just before the given index, shifting

subsequent values to the right
v.isEmpty() returns true if the vector contains no elements
v.remove(i); removes/returns value at given index, shifting

subsequent values to the left
v[i] = value; or
v.set(i, value);

replaces value at given index

v.subList(start, length) returns new vector of sub-range of indexes
v.size() returns the number of elements in vector
v.toString() returns a string representation of the vector

such as "{3, 42, -7, 15}"
ostr << v prints v to given output stream (e.g. cout << v)

20

Iterating over a vector
Vector<string> names {"Ed", "Hal", "Sue"};

for (int i = 0; i < names.size(); i++) {
cout << names[i] << endl; // for loop

}

for (int i = names.size() - 1; i >= 0; i--) {
cout << names[i] << endl; // for loop, backward

}

for (string name : names) {
cout << name << endl; // "for-each" loop

}

for (string& name : names) {
name += "!"; // "for-each" by reference

}
cout << names << endl; // {"Ed!", "Hal!", "Sue!"}

21

Vector insert/remove
v.insert(2, 42);
• shift elements right to make room for the new element

v.remove(1);
• shift elements left to cover the space left by the removed element

(These operations are slower the more elements they need to shift.)

index 0 1 2 3 4
value 3 8 9 7 5

index 0 1 2 3 4 5
value 3 8 42 9 7 5

index 0 1 2 3 4 5
value 3 8 42 9 7 5

index 0 1 2 3 4
value 3 42 9 7 5

22

Exercise
• Write a function countInRange that accepts a vector of integers

along with a min and max integer as parameters, and returns the
number of elements in the vector within that range inclusive.

– Example: if vector v stores:
{28, 1, 17, 4, 41, 9, 59, 8, 31, 30, 25}

– Then the call of countInRange(v, 10, 30) returns 4.

countInRange
removeAll

23

Exercise solution
int countInRange(const Vector<int>& v, int min, int max) {

int count = 0;
for (int i = 0; i < v.size(); i++) {

if (v[i] >= min && v[i] <= max) {
count++;

}
}
return count;

}

24

Exercise 2

• Write a function removeAll that accepts a vector of strings along
with an element value string as parameters, and modifies the vector
to remove all occurrences of that string.
• Example: removing all occurrences of "b" from
{a, b, c, b, b, a, b} yields {a, c, a}.

countInRange
removeAll

25

Exercise solution
void removeAll(Vector<string>& v, string value) {

for (int i = v.size() - 1; i >= 0; i--) {
if (v[i] == value) {

v.remove(i);
}

}
}

26

Nested vectors
• Collections can contain other collections.

– How does the following code contrast with using a Grid?

Vector<int> row1 {1};
Vector<int> row2 {2, 3};
Vector<int> row3 {4, 5, 6};
Vector<Vector<int> > vv;
vv.add(row1);
vv.add(row2);
vv.add(row3);
cout << vv << endl; // {{1}, {2, 3}, {4, 5, 6}}
cout << vv[1][1] << endl; // 3

// quicker initialization
Vector<Vector<int> > vv {

{1}, {2, 3}, {4, 5, 6}
};

27

Inside a Vector
• A Vector is implemented using an array of values.

– The vector also stores its size and array capacity.
– Array is larger than data so there is room to add elements later

(an "unfilled array")

Vector<int> nums {3, 8, 9, 7, 5, 12};

index 0 1 2 3 4 5 6 7 8 9
value 3 8 9 7 5 12 0 0 0 0
size 6 capacity 10

unfilled

28

Vector insert
• How do you insert in the middle of a vector? v.insert(3, 42);

– shift elements right to make room for the new element
– increment size

– Observation: Insert/remove at the front is slow.
• Runtime is related to the size of the vector (number of elements to shift).

index 0 1 2 3 4 5 6 7 8 9

value 3 8 9 7 5 12 0 0 0 0
size 6 capacity 10

index 0 1 2 3 4 5 6 7 8 9

value 3 8 9 42 7 5 12 0 0 0
size 7 capacity 10

29

LinkedList class
• Class LinkedList provides the same functionality as Vector.

LinkedList<int> list;
for (int i = 1; i <= 8; i++) {

list.add(10 * i); // {10, 20, 30, 40, 50, 60, 70, 80}
}

• linked list: Made of nodes, each storing a value and link to 'next' node.
• Internally the list knows its front node only (sometimes back too),

but can go to 'next' repeatedly to reach other nodes.

10 20 30 40 50 60 70 80
0 1 2 3 4 5 6 7index

front back

30

LinkedList insert
• How do you insert in the middle of a linked list? l.insert(3, 42);

– start at the front, walk to the location of the new element
– add a new node containing the new element (no "shifting")

– What operations are slow/fast for a linked list to perform?

3 8 9 7 5 12

0 1 2 3 4 5

3 8 9

42

7 5

0 1 2

3

4 5 6

12

31

Vector vs LinkedList
• Q: Which is faster? A. Vector B. LinkedList C. about the same

• removing from the front?
• removing from the back?
• inserting in the middle?
• printing the entire contents of the list?
• filtering out all occurrences of a particular value?

10 20 30 40 50 60 70 80

index 0 1 2 3 4 5 6 7 8 9
value 10 20 30 40 50 60 70 80 0 0
size 8 capacity 10

32

Plan For Today
• Recap: C++ Streams and Grid
• ADTs: Vector
• Announcements
• Efficiency and Big-O

33

Announcements
• Discussion Section Signups

– On-time signups have closed; results posted by tomorrow 5PM
– Sections start Wed.!

– Late section signups open tomorrow 5PM

• Assignment 1
– Due Friday at 11AM

– Use Piazza, LaIR, Office Hours, etc. if you have questions

• Lecture participation
– If you enrolled recently, you’ll be emailed today with your assignment

34

AfroTech

Stanford may be sponsoring students to the AfroTech
conference.

If you’re interested in attending, fill out this form!

https://goo.gl/forms/78m3izBgwEF4iBZy2

https://goo.gl/forms/78m3izBgwEF4iBZy2

35

she++

36

Brown Institute Showcase

Check out how our Magic Grant teams and Brown Fellows
spent the last year developing groundbreaking media
technologies and producing award-winning stories.

Gates Computer Science Building
AT&T Patio and Lawn

37

Plan For Today
• Recap: C++ Streams and Grid
• ADTs: Vector
• Announcements
• Efficiency and Big-O

38

Algorithmic Efficiency
• We would like a way to measure how “fast” our code is.

– Seconds? This changes on each computer/chip!
– Exact # Operations? Hard to measure, maybe unnecessarily precise.

• To measure algorithmic efficiency, we need to narrow down why
efficiency is important in the first place.

• What most significantly impacts an algorithm’s speed? Data size
– Most algorithms run fast when processing little data. But at Facebook,

difference between 1 hr. and 1 day for machine learning matters!
– Fun fact: Facebook scanned ~105TB of data per hour….6 years ago!

• Let’s develop a way to measure an algorithm’s speed that depends
on the amount of data being processed.

39

Example: vectorMax

int vectorMax(const Vector<int>& v) {
int currentMax = v[0];
for (int element : v) {

if (currentMax < element) {
currentMax = element;

}
}

return currentMax;
}

40

vectorMax()
Ti

m
e

 (s
)

0

7.5

15

22.5

30

Entries

0 150000000 300000000 450000000 600000000

R² = 0.9965

Execution Time: vectorMax()

41

Inefficient vectorMax()
Ti

m
e

 (s
)

0

7.5

15

22.5

30

Entries

0 7500 15000 22500 30000

R² = 0.9972

Execution Time: vectorMax()

42

Exploring Runtime
• The runtime of the first implementation

seems to be linearly proportional to the
data size. So 2x more data means 2x
longer to run. Ti

m
e

 (s
)

0

7.5

15

22.5

30

Entries

0 150000000 300000000 450000000 600000000

R² = 0.9965

Execution Time: vectorMax()

int vectorMax(const Vector<int>& v) {
int currentMax = v[0];
for (int element : v) {

if (currentMax < element) {
currentMax = element;

}
}

return currentMax;
}

For each element, this
loop will execute once.
Doubling the data means
that this loop will
execute twice as many
times.

We say this runtime is
O(N): “on the order of N
operations”.

43

Exploring Runtime
• The runtime of the second

implementation seems to be quadratically
(2) proportional to the data size. So 2x
more data means 4x longer to run.

int vectorMaxQuadratic(const Vector<int>& v) {
Vector<int> copy(v);
selectionSort(copy);
return copy[copy.size() - 1];

}

Ti
m

e
 (s

)

0

7.5

15

22.5

30

Entries

0 7500 15000 22500 30000

R² = 0.9972

Execution Time: vectorMax()

https://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html

https://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html

44

Exploring Runtime
void selectionSort(Vector<int>& v) {

for (int i = 0; i < v.size(); i++) {
// walk across the array looking for the smallest value
int smallestIndex = i;
for (int j = i+1; j < v.size(); j++) {

if (v[j] < v[smallestIndex]) {
smallestIndex = j;

}
}
// swap v[i] with v[smallestIndex]
swap(v, i, smallestIndex);

}
}

For each element, the first loop will execute once. Additionally, for each element, all inner
loops will execute once. Doubling the data means that the outer loop will execute twice as
many times, and each inner loop will execute twice as many times, totaling 4x more time.

We say this
runtime is O(N2).

45

Exploring Runtime
int vectorMaxQuadratic(const Vector<int>& v) {

Vector<int> copy(v);
selectionSort(copy);

// Paranoid check to see if it’s correct
int max = copy[copy.size() – 1];
bool isCorrect = true;
for (int i = 0; i < copy.size(); i++) {

if (copy[i] > max) {
isCorrect = false;

}
}

if (isCorrect) {
return max;

} else {
error(“Internal error”);

}
}

We said this
runtime is O(N2).

Due to this loop,
this runtime is
O(N).

Technically the total runtime
is O(N2 + N), but we say that
this is just O(N2) because as
N gets extremely large, this
is the only term that matters.

46

Exploring Runtime
int vectorMaxQuadratic(const Vector<int>& v) {

// Show the user we are doing something
for (int i = 0; i < 100000000; i++) {

cout << "Calculating..." << endl;
}

Vector<int> copy(v);
selectionSort(copy);
return copy[copy.size() – 1];

}

We could say the total runtime is O(N2 + 100M), but we don’t care about
constants (even large ones). If N = 100T, then it’s insignificant! We just care
about how the algorithm performs relative to the data size. So it’s O(N2).

We said this
runtime is O(N2).

This loop runs
100M times!

We say this
runtime is
constant O(1)
relative to N.

47

Runtime Rules
• If you have terms adding together, drop all but the most dominant

term.
– Code at the same indentation level adds

• We only care about terms that depend on the data size – constant
terms (O(1)) are insignificant.

• Multiplying terms together does matter (e.g. selection sort).
– E.g. a loop over all the data, and inside that loop you loop again each

time.

– Nested code multiplies

• Work from the innermost indented code out

• Realize that some code statements are more costly than others
– It takes O(N2) time to call a function with runtime O(N2), even though

calling that function is only one line of code

48

What is the Big O?
int sum = 0;
for (int i = 1; i < 100000; i++) {

for (int j = 1; j <= i; j++;) {
for (int k = 1; k <= N; k++) {

sum++;
}

}
}
Vector<int> v;
for (int x = 1; x <= N; x += 2) {

v.insert(0, x);
}
cout << v << endl;

49

Complexity classes
• complexity class: A category of algorithm

efficiency based on the algorithm's
relationship to the input size "N".

Class Big-Oh If you double N, ... Example
constant O(1) unchanged 10ms
logarithmic O(log2 N) increases slightly 175ms
linear O(N) doubles 3.2 sec
log-linear O(N log2 N) slightly more than doubles 11 sec
quadratic O(N2) quadruples 1 min 42 sec
quad-linear O(N2 log2 N) slightly more than quadruple 8 min
cubic O(N3) multiplies by 8 55 min
...
exponential O(2N) multiplies drastically 5 * 1061 years
factorial O(N!) multiplies drastically 10200 years

50

More Examples

What would the complexity be of a 3-nested loop?
Answer: n3 (polynomial)
In real life, this comes up in 3D imaging, video, etc., and it is slow!
Graphics cards are built with hundreds or thousands of processors to tackle this
problem!

51

More Examples

52

More Examples

53

More Examples

54

More Examples

55

Preparing for the Worst

56

Preparing for the Worst

57

Preparing for the Worst

58

Preparing for the Worst
• In general, we always examine the worst case runtime.
• Sometimes, when explicitly mentioned, we examine the best case

or average case. But we always assume we are discussing worst
case unless explicitly mentioning otherwise.

59

Vector efficiency

– Functions that must loop over or shift the internal array are slow.
* average-case runtime

Member Big-Oh *
v.add(value); O(1)
v.get(i) or v[i] O(1)
v.insert(i, value); O(N)
v.remove(i); O(N)
v.set(i, val) or v[i]= O(1)
v.size(), v.isEmpty() O(1)
v.toString(), cout << v O(N)

index 0 1 2 3 4 5 6 7 8 9
value 3 8 9 42 7 5 12 0 0 0
size 7 capacity 10

60

Big-Oh question
Vector<int> v1; // 1)
for (int i = 0; i < N; i++) {

v1.add(i);
}
for (int i = 0; i < N; i++) {

v1.remove(v1.size() - 1);
}

Vector<int> v2; // 2)
for (int i = 1; i <= N; i++) {

v2.insert(0, i); // insert value i at index 0, twice
v2.insert(0, i);

}
v2.clear();

Q: In which complexity class does each piece of code above belong?
A. O(log N) B. O(N)
C. O(N log N) D. O(N2) E. O(N3)

61

Vector/LinkedList runtime

* average-case runtime;
Vector = O(1) at end, worst at front;
LinkedList = O(1) at front and end, worst in middle

Member Vector LinkedList
add(value); O(1) O(1)
get(i) or [i] O(1) O(N)*
insert(i, value); O(N)* O(N)*
remove(i); O(N)* O(N)*
set(i, val) or [i]= O(1) O(N)*
size(), isEmpty() O(1) O(1)
toString(), cout << v O(N) O(N)

index 0 1 2 3 4 5 6 7 8 9
value 3 8 9 42 7 5 12 0 0 0
size 7 capacity 10

62

The Math Behind It

63

Constant Time

64

What is N?
• N represents the “data size”: this could mean:

– The number of elements in a data structure
– The number passed in to a function representing # times to loop

• It depends on what the algorithm is (but there is likely only 1 clear
choice)

65

Exponential Time

66

Exponential Time

67

Exponential Time

This runtime
is O(2N)!

68

Exponential Time

69

Recap
• Recap: C++ Streams and Grid
• ADTs: Vector
• Announcements
• Efficiency and Big-O

Next time: ADTs: Stacks and Queues

