
This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Keith Schwarz, Julie Zelenski, Jerry Cain, Eric Roberts, Mehran Sahami, Stuart Reges, Cynthia Lee, Marty Stepp, Ashley Taylor and others.

CS 106X, Lecture 7
Introduction to Recursion

reading:
Programming Abstractions in C++, Chapter 7

2

Plan For Today
• Recap: Maps, Sets and Lexicons
• Thinking Recursively
• Examples: Factorial and Fibonacci
• Announcements
• Coding Together: Palindromes
• Bonus: Binary

3

Plan For Today
• Recap: Maps, Sets and Lexicons
• Thinking Recursively
• Examples: Factorial and Fibonacci
• Announcements
• Coding Together: Palindromes
• Bonus: Binary

4

Sets (5.5)
• set: A collection of unique values (no duplicates allowed)

that can perform the following operations efficiently:
– add, remove, search (contains)

– We don't think of a set as having any indexes; we just
add things to the set in general and don't worry about order

set.contains("to") true

set

"the" "of"

"from"
"to"

"she" "you"

"him""why"

"in"

"down"
"by"

"if"

set.contains("be") false

5

Stanford C++ sets (5.5)
– Set: implemented using a linked structure called a binary tree.

• pretty fast; elements are stored in sorted order
• values must have a < operation

– HashSet: implemented using a special array called a hash table.
• very fast; elements are stored in unpredictable order
• values must have a hashCode function (provided for most standard types)

– variant: LinkedHashSet (slightly slower, but remembers insertion order)

How to choose: Do you need the elements to be in sorted order?
• If so: Use Set.
• If not: Use HashSet for the performance boost.

6

Set members
#include "set.h"
#include "hashset.h"

Member Set HashSet Description
s.add(value); O(log N) O(1) adds given value to set
s.clear(); O(N) O(N) removes all elements of set
s.contains(value) O(log N) O(1) true if given value is found
s.isEmpty() O(1) O(1) true if set contains no elements
s.isSubsetOf(set) O(N log N) O(N) true if set contains all of this one
s.remove(value); O(log N) O(1) removes given value from set
s.size() O(1) O(1) number of elements in set
s.toString() O(N) O(N) e.g "{3, 42, -7, 15}"
ostr << s O(N) O(N) print set to stream

7

Set operators

Set<string> set;
set += "Jess";
set += "Alex";
Set<string> set2 {"a", "b", "c"}; // initializer list
...

s1 == s2 true if the sets contain exactly the same elements
s1 != s2 true if the sets don't contain the same elements
s1 + s2 returns the union of s1 and s2 (elements from either)
s1 += s2; sets s1 to the union of s1 and s2 (or adds a value to s1)
s1 * s2 returns intersection of s1 and s2 (elements in both)
s1 *= s2; sets s1 to the intersection of s1 and s2
s1 - s2 returns difference of s1, s2 (elements in s1 but not s2)
s1 -= s2; sets s1 to the difference of s1 and s2

(or removes a value from s1)

8

Looping over a set
// forward iteration with for-each loop (read-only)
for (type name : collection) {

statements;
}

– sets have no indexes; can't use normal for loop with index [i]
– Set iterates in sorted order; HashSet in unpredictable order

for (int i = 0; i < set.size(); i++) {
do something with set[i]; // does not compile

}

9

Stanford Lexicon (5.6)

#include "lexicon.h"

• A set of words optimized for dictionary and prefix lookups
Member Big-Oh Description
Lexicon name;
Lexicon name("file");

O(N*len) create empty lexicon or read from file

L.add(word); O(len) adds the given word to lexicon
L.addWordsFromFile("f"); O(N*len) adds all words from input file (one per line)
L.clear(); O(N*len) removes all elements of lexicon
L.contains("word") O(len) true if word is found in lexicon
L.containsPrefix("str") O(len) true if s is the start of any word in lexicon
L.isEmpty() O(1) true if lexicon contains no words
L.remove("word"); O(len) removes word from lexicon, if present
L.removePrefix("str"); O(len) removes all words that start with prefix
L.size() O(1) number of elements in lexicon
L.toString() O(N) e.g. {"arm", "cot", "zebra"}

10

Maps (5.4)
• map: A collection that stores pairs, where each pair consists of a

first half called a key and a second half called a value.
– sometimes called a "dictionary", "associative array", or "hash"

– usage: add (key, value) pairs; look up a value by supplying a key.

• real-world examples:
– dictionary of words and definitions
– phone book
– social buddy list key value

"Marty" → "685-2181"
"Eric" → "123-4567"
"Yana" → "685-2181"
"Alisha" → "947-2176"

11

Map operations
• m.put(key, value); Adds a key/value pair to the map.

m.put("Eric", "650-123-4567"); // or,
m["Eric"] = "650-123-4567";
• Replaces any previous value for that key.

• m.get(key) Returns the value paired with the given key.
string phoneNum = m.get("Yana"); // "685-2181", or,
string phoneNum = m["Yana"];
• Returns a default value (0, 0.0, "", etc.) if the key is not found.

• m.remove(key); Removes the
given key and its paired value.

m.remove("Marty");
• Has no effect if the key is not in the map.

key value
"Marty" → "685-2181"
"Eric" → "123-4567"
"Yana" → "685-2181"
"Alisha" → "947-2176"

12

Map implementation
• in the Stanford C++ library, there are two map classes:

– Map: implemented using a linked structure called a binary search tree.
• pretty fast for all operations; keys are stored in sorted order
• both kinds of maps implement exactly the same operations
• the keys' type must be a comparable type with a < operation

– HashMap: implemented using a special array called a hash table.
• very fast, but keys are stored in unpredictable order
• the keys' type must have a hashCode function (but most types have one)

• Requires 2 type parameters: one for keys, one for values.
// maps from string keys to integer values
Map<string, int> votes;

13

Map members
Member Map HashMap Description

m.clear(); O(N) O(N) removes all key/value pairs

m.containsKey(key) O(log N) O(1) true if map has a pair with given key

m[key] or
m.get(key)

O(log N) O(1) returns value mapped to given key;
if not found, adds it with a default value

m.isEmpty() O(1) O(1) true if the map contains no pairs

m.keys() O(N) O(N) a Vector copy of all keys in map

m[key] = value; or
m.put(key, value);

O(log N) O(1) adds a key/value pair;
if key already exists, replaces its value

m.remove(key); O(log N) O(1) removes any pair for given key
m.size() O(1) O(1) returns number of pairs in map

m.toString() O(N) O(N) e.g. "{a:90, d:60, c:70}"
m.values() O(N) O(N) a Vector copy of all values in map
ostr << m O(N) O(N) prints map to stream

14

Looping over a map
• On a map, a for-each loop processes the keys.

– Sorted order in a Map; unpredictable order in a HashMap.
– If you want the values, just look up map[k] for each key k.

Map<string, double> gpa;
gpa.put("Victoria", 3.98);
gpa.put("Marty", 2.7);
gpa.put("BerkeleyStudent", 0.0);
...
for (string name : gpa) {

cout << name << "'s GPA is " << gpa[name] << endl;
}

15

Plan For Today
• Recap: Maps, Sets and Lexicons
• Thinking Recursively
• Examples: Factorial and Fibonacci
• Announcements
• Coding Together: Palindromes
• Bonus: Binary

16

Recursion

How many people are sitting in the
column behind you?

17

How Many Behind Me?
1. If there is no one behind me, I will answer 0.
2. If there is someone behind me:

–Ask them how many people are behind them
–My answer is their answer plus 1

1. Base case: the simplest
possible instance of this
question. One that requires
no additional recursion.

2. Recursive case:
describe the problem using
smaller occurrences of the
same problem.

18

Recursive Thinking
•In code, recursion is when a function in your

program calls itself as part of its execution.
•Conceptually, a recursive problem is one that is

self-similar; it can be solved via smaller
occurrences of the same problem.

19

Plan For Today
• Recap: Maps, Sets and Lexicons
• Thinking Recursively
• Examples: Factorial and Fibonacci
• Announcements
• Coding Together: Palindromes
• Bonus: Binary

20

The Recursion Checklist
qFind what information we need to keep track of.

What inputs/outputs are needed to solve the problem
at each step? Do we need a wrapper function?

qFind our base case(s). What are the simplest (non-
recursive) instance(s) of this problem?

qFind our recursive step. How can this problem be
solved in terms of one or more simpler instances of
the same problem that lead to a base case?

qEnsure every input is handled. Do we cover all
possible cases? Do we need to handle errors?

21

Example 1: Factorial
n! = n * (n-1) * (n-2) * (n-3) * … * 1

• Write a function that computes and returns the factorial of a
provided number, recursively (no loops).
– e.g. factorial(4) should return 24
– You should be able to compute the value of any non-negative number.

(0! = 1).

22

The Recursion Checklist
qFind what information we need to keep track of.

What inputs/outputs are needed to solve the problem
at each step? Do we need a wrapper function?

qFind our base case(s). What are the simplest (non-
recursive) instance(s) of this problem?

qFind our recursive step. How can this problem be
solved in terms of one or more simpler instances of
the same problem that lead to a base case?

qEnsure every input is handled. Do we cover all
possible cases? Do we need to handle errors?

23

Factorial: Function

// Takes in n as parameter
int factorial(int n) {

// returns factorial
...

}

n! = n * (n-1) * (n-2) * (n-3) * … * 1

24

The Recursion Checklist
üFind what information we need to keep track of.

What inputs/outputs are needed to solve the problem
at each step? Do we need a wrapper function?

qFind our base case(s). What are the simplest (non-
recursive) instance(s) of this problem?

qFind our recursive step. How can this problem be
solved in terms of one or more simpler instances of
the same problem that lead to a base case?

qEnsure every input is handled. Do we cover all
possible cases? Do we need to handle errors?

25

Factorial: Base Case

0! = 1

n! = n * (n-1) * (n-2) * (n-3) * … * 1

26

The Recursion Checklist
üFind what information we need to keep track of.

What inputs/outputs are needed to solve the problem
at each step? Do we need a wrapper function?

üFind our base case(s). What are the simplest (non-
recursive) instance(s) of this problem?

qFind our recursive step. How can this problem be
solved in terms of one or more simpler instances of
the same problem that lead to a base case?

qEnsure every input is handled. Do we cover all
possible cases? Do we need to handle errors?

27

Factorial: Recursive Step

n! = n * (n-1)!

n! = n * (n-1) * (n-2) * (n-3) * … * 1

We tackle a smaller
instance of the
factorial problem that
leads us towards 0!.

We solve part of
the problem.

28

The Recursion Checklist
üFind what information we need to keep track of.

What inputs/outputs are needed to solve the problem
at each step? Do we need a wrapper function?

üFind our base case(s). What are the simplest (non-
recursive) instance(s) of this problem?

üFind our recursive step. How can this problem be
solved in terms of one or more simpler instances of
the same problem that lead to a base case?

qEnsure every input is handled. Do we cover all
possible cases? Do we need to handle errors?

29

Factorial: Input Check
1. If n is 0, the factorial is 1
2. If n is greater than 0:

1. Calculate (n-1)!
2. The factorial of n is that result times n

30

The Recursion Checklist
üFind what information we need to keep track of.

What inputs/outputs are needed to solve the problem
at each step? Do we need a wrapper function?

üFind our base case(s). What are the simplest (non-
recursive) instance(s) of this problem?

üFind our recursive step. How can this problem be
solved in terms of one or more simpler instances of
the same problem that lead to a base case?

üEnsure every input is handled. Do we cover all
possible cases? Do we need to handle errors?

31

Factorial
// Returns n!, or 1 * 2 * 3 * 4 * ... * n.
// Assumes n >= 0.
int factorial(int n) {

if (n == 0) { // base case
return 1;

} else {
return n * factorial(n - 1); // recursive case

}
}

32

Recursive stack trace

int factorial(int n) { // 4
if (n == 0) { // base case

return 1;
} else {

return n * factorial(n - 1); // recursive case
}

}

6
int factorial(int n) { // 3

if (n == 0) { // base case
return 1;

} else {
return n * factorial(n - 1); // recursive case

}
}

2
int factorial(int n) { // 2

if (n == 0) { // base case
return 1;

} else {
return n * factorial(n - 1); // recursive case

}
}

1
int factorial(int n) { // 1

if (n == 0) { // base case
return 1;

} else {
return n * factorial(n - 1); // recursive case

}
}

1
int factorial(int n) { // 0

if (n == 0) { // base case
return 1;

} else {
return n * factorial(n - 1); // recursive case

}
}

int factorialFour = factorial(4); // 24

33

Recursive Program Structure
recursiveFunc() {
if (test for simple case) { // base case
Compute the solution without recursion

} else { // recursive case
Break the problem into subproblems of the same form
Call recursiveFunc() on each self-similar subproblem
Reassamble the results of the subproblems

}
}

34

Non-recursive factorial
// Returns n!, or 1 * 2 * 3 * 4 * ... * n.
// Assumes n >= 1.
int factorial(int n) {

int total = 1;
for (int i = 1; i <= n; i++) {

total *= i;
}
return total;

}

• Important observations:
0! = 1! = 1
4! = 4 * 3 * 2 * 1
5! = 5 * 4 * 3 * 2 * 1

= 5 * 4!

35

Example 2: Fibonacci
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...
• The Fibonacci sequence starts with 0 and 1, and each subsequent

number is the sum of the two previous numbers.
• Write a function that computes and returns the nth Fibonacci

number, recursively (no loops).
– e.g. fibonacci(6) should return 8

36

The Recursion Checklist
qFind what information we need to keep track of.

What inputs/outputs are needed to solve the problem
at each step? Do we need a wrapper function?

qFind our base case(s). What are the simplest (non-
recursive) instance(s) of this problem?

qFind our recursive step. How can this problem be
solved in terms of one or more simpler instances of
the same problem that lead to a base case?

qEnsure every input is handled. Do we cover all
possible cases? Do we need to handle errors?

37

The Recursion Checklist
qFind what information we need to keep track of.

What inputs/outputs are needed to solve the problem
at each step? Do we need a wrapper function?

qFind our base case(s). What are the simplest (non-
recursive) instance(s) of this problem?

qFind our recursive step. How can this problem be
solved in terms of one or more simpler instances of
the same problem that lead to a base case?

qEnsure every input is handled. Do we cover all
possible cases? Do we need to handle errors?

38

Fibonacci: Function

// Takes in index
int fibonacci(int i) {

// returns i’th fibonacci number
...

}

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

39

The Recursion Checklist
üFind what information we need to keep track of.

What inputs/outputs are needed to solve the problem
at each step? Do we need a wrapper function?

qFind our base case(s). What are the simplest (non-
recursive) instance(s) of this problem?

qFind our recursive step. How can this problem be
solved in terms of one or more simpler instances of
the same problem that lead to a base case?

qEnsure every input is handled. Do we cover all
possible cases? Do we need to handle errors?

40

Fibonacci: Base Case(s)

fibonacci(0) = 0;
fibonacci(1) = 1;

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

41

The Recursion Checklist
üFind what information we need to keep track of.

What inputs/outputs are needed to solve the problem
at each step? Do we need a wrapper function?

üFind our base case(s). What are the simplest (non-
recursive) instance(s) of this problem?

qFind our recursive step. How can this problem be
solved in terms of one or more simpler instances of
the same problem that lead to a base case?

qEnsure every input is handled. Do we cover all
possible cases? Do we need to handle errors?

42

Fibonacci: Recursive Step

fibonacci(x) = fibonacci(x-1) + fibonacci(x-2);

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

We tackle two smaller instances
of the Fibonacci problem that
lead us towards the first and
second Fibonacci numbers.

43

The Recursion Checklist
üFind what information we need to keep track of.

What inputs/outputs are needed to solve the problem
at each step? Do we need a wrapper function?

üFind our base case(s). What are the simplest (non-
recursive) instance(s) of this problem?

üFind our recursive step. How can this problem be
solved in terms of one or more simpler instances of
the same problem that lead to a base case?

qEnsure every input is handled. Do we cover all
possible cases? Do we need to handle errors?

44

Fibonacci: Input Check
1. The 0th Fibonacci number is 0
2. The 1st Fibonacci number is 1
3. The 2nd, 3rd, etc. Fibonacci number is the

sum of the previous two Fibonacci numbers

45

The Recursion Checklist
üFind what information we need to keep track of.

What inputs/outputs are needed to solve the problem
at each step? Do we need a wrapper function?

üFind our base case(s). What are the simplest (non-
recursive) instance(s) of this problem?

üFind our recursive step. How can this problem be
solved in terms of one or more simpler instances of
the same problem that lead to a base case?

üEnsure every input is handled. Do we cover all
possible cases? Do we need to handle errors?

46

Fibonacci
// Returns the i’th Fibonacci number in the sequence
// (0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …)
// Assumes i >= 0.
int fibonacci(int i) {

if (i == 0) { // base case 1
return 0;

} else if (i == 1) { // base case 2
return 1;

} else {
// recursive case
return fibonacci(i-1) + fibonacci(i-2);

}
}

47

Recursive stack trace
int fourthFibonacci = fibonacci(3);

int fibonacci(int i) { // i = 3
if (i == 0) {

return 0;
} else if (i == 1) {

return 1;
} else {

return fibonacci(i-1) + fibonacci(i-2);
}

}

48

Recursive stack trace

int fibonacci(int i) { // i = 3
if (i == 0) {

return 0;
} else if (i == 1) {

return 1;
} else {

return fibonacci(i-1) + fibonacci(i-2);
}

}

int fourthFibonacci = fibonacci(3);

49

Recursive stack trace

int fibonacci(int i) { // i = 3
if (i == 0) {

return 0;
} else if (i == 1) {

return 1;
} else {

return fibonacci(i-1) + fibonacci(i-2);
}

}

int fibonacci(int i) { // i = 2
if (i == 0) {

return 0;
} else if (i == 1) {

return 1;
} else {

return fibonacci(i-1) + fibonacci(i-2);
}

}

int fourthFibonacci = fibonacci(3);

50

Recursive stack trace

int fibonacci(int i) { // i = 3
if (i == 0) {

return 0;
} else if (i == 1) {

return 1;
} else {

return fibonacci(i-1) + fibonacci(i-2);
}

}

int fibonacci(int i) { // i = 2
if (i == 0) {

return 0;
} else if (i == 1) {

return 1;
} else {

return fibonacci(i-1) + fibonacci(i-2);
}

}

int fourthFibonacci = fibonacci(3);

51

Recursive stack trace

int fibonacci(int i) { // i = 3
if (i == 0) {

return 0;
} else if (i == 1) {

return 1;
} else {

return fibonacci(i-1) + fibonacci(i-2);
}

}

int fibonacci(int i) { // i = 2
if (i == 0) {

return 0;
} else if (i == 1) {

return 1;
} else {

return fibonacci(i-1) + fibonacci(i-2);
}

}

int fibonacci(int i) { // i = 1
if (i == 0) {

return 0;
} else if (i == 1) {

return 1;
} else {

return fibonacci(i-1) + fibonacci(i-2);
}

}

int fourthFibonacci = fibonacci(3);

52

Recursive stack trace

int fibonacci(int i) { // i = 3
if (i == 0) {

return 0;
} else if (i == 1) {

return 1;
} else {

return fibonacci(i-1) + fibonacci(i-2);
}

}

int fibonacci(int i) { // i = 2
if (i == 0) {

return 0;
} else if (i == 1) {

return 1;
} else {

return fibonacci(i-1) + fibonacci(i-2);
}

} 1

int fourthFibonacci = fibonacci(3);

53

Recursive stack trace

int fibonacci(int i) { // i = 3
if (i == 0) {

return 0;
} else if (i == 1) {

return 1;
} else {

return fibonacci(i-1) + fibonacci(i-2);
}

}

int fibonacci(int i) { // i = 2
if (i == 0) {

return 0;
} else if (i == 1) {

return 1;
} else {

return fibonacci(i-1) + fibonacci(i-2);
}

} 1

int fibonacci(int i) { // i = 0
if (i == 0) {

return 0;
} else if (i == 1) {

return 1;
} else {

return fibonacci(i-1) + fibonacci(i-2);
}

}

int fourthFibonacci = fibonacci(3);

54

Recursive stack trace

int fibonacci(int i) { // i = 3
if (i == 0) {

return 0;
} else if (i == 1) {

return 1;
} else {

return fibonacci(i-1) + fibonacci(i-2);
}

}

int fibonacci(int i) { // i = 2
if (i == 0) {

return 0;
} else if (i == 1) {

return 1;
} else {

return fibonacci(i-1) + fibonacci(i-2);
}

} 1 0

int fourthFibonacci = fibonacci(3);

55

Recursive stack trace

int fibonacci(int i) { // i = 3
if (i == 0) {

return 0;
} else if (i == 1) {

return 1;
} else {

return fibonacci(i-1) + fibonacci(i-2);
}

} 1

int fourthFibonacci = fibonacci(3);

56

Recursive stack trace

int fibonacci(int i) { // i = 3
if (i == 0) {

return 0;
} else if (i == 1) {

return 1;
} else {

return fibonacci(i-1) + fibonacci(i-2);
}

} 1

int fibonacci(int i) { // i = 1
if (i == 0) {

return 0;
} else if (i == 1) {

return 1;
} else {

return fibonacci(i-1) + fibonacci(i-2);
}

}

int fourthFibonacci = fibonacci(3);

57

Recursive stack trace

int fibonacci(int i) { // i = 3
if (i == 0) {

return 0;
} else if (i == 1) {

return 1;
} else {

return fibonacci(i-1) + fibonacci(i-2);
}

} 1 1

int fourthFibonacci = fibonacci(3); // 2

58

Recursive Tree
fibonacci(4)

fibonacci(3) fibonacci(2)

fibonacci(2) fibonacci(1)

fibonacci(1) fibonacci(0)

fibonacci(1) fibonacci(0)

59

Recursive Tree
fibonacci(4)

fibonacci(3) fibonacci(2)

fibonacci(2) fibonacci(1)

fibonacci(1) fibonacci(0)

fibonacci(1) fibonacci(0)

Base case Recursive case

60

Preconditions
• precondition: Something your code assumes is true when called.

– Often documented as a comment on the function's header:

// Returns the ith Fibonacci number
// Precondition: i >= 0
int fibonacci(int i) {

– Stating a precondition doesn't really "solve" the problem, but it at least
documents our decision and warns the client what not to do.

– What if the caller doesn't listen and passes a negative power anyway?
What if we want to actually enforce the precondition?

61

Throwing exceptions
throw expression;

– Generates an exception that will crash the program,
unless it has code to handle ("catch") the exception.

– In Java, you can only throw objects that are Exceptions;
in C++ you can throw any type of value (int, string, etc.)

– There is a class std::exception that you can use.
• Stanford C++ lib's "error.h" also has an error(string) function.

• Why would anyone ever want a program to crash?

62

Fibonacci Solution 2
// Returns the ith Fibonacci number
// Precondition: i >= 0
int fibonacci(int i) {

if (i < 0) {
throw "illegal negative index";

} else ...
...

}

63

Plan For Today
• Recap: Maps, Sets and Lexicons
• Thinking Recursively
• Examples: Factorial and Fibonacci
• Announcements
• Coding Together: Palindromes
• Bonus: Binary

64

Announcements
• Section swap/change deadline is tomorrow (10/9) @ 5PM
• Zach’s Office Hours Change (this week only): Thurs. 2:30-4:30PM
• Qt Creator Warnings (Piazza)
• VPTL Tutoring Resources (Piazza)

65

Plan For Today
• Recap: Maps, Sets and Lexicons
• Thinking Recursively
• Examples: Factorial and Fibonacci
• Announcements
• Coding Together: Palindromes
• Bonus: Binary

66

isPalindrome exercise
• Write a recursive function isPalindrome accepts a string and

returns true if it reads the same forwards as backwards.

isPalindrome("madam") ® true
isPalindrome("racecar") ® true
isPalindrome("step on no pets") ® true
isPalindrome("able was I ere I saw elba") ® true
isPalindrome("Q") ® true
isPalindrome("Java") ® false
isPalindrome("rotater") ® false
isPalindrome("byebye") ® false
isPalindrome("notion") ® false

isPalindrome

67

The Recursion Checklist
qFind what information we need to keep track of.

What inputs/outputs are needed to solve the problem
at each step? Do we need a wrapper function?

qFind our base case(s). What are the simplest (non-
recursive) instance(s) of this problem?

qFind our recursive step. How can this problem be
solved in terms of one or more simpler instances of
the same problem that lead to a base case?

qEnsure every input is handled. Do we cover all
possible cases? Do we need to handle errors?

68

isPalindrome solution
// Returns true if the given string reads the same
// forwards as backwards.
// By default, true for empty or 1-letter strings.
bool isPalindrome(string s) {

if (s.length() < 2) { // base case
return true;

} else { // recursive case
if (s[0] != s[s.length() - 1]) {

return false;
}
string middle = s.substr(1, s.length() - 2);
return isPalindrome(middle);

}
}

69

isPalindrome solution 2
// Returns true if the given string reads the same
// forwards as backwards.
// By default, true for empty or 1-letter strings.
// This version is also case-insensitive.
bool isPalindrome(string s) {

if (s.length() < 2) { // base case
return true;

} else { // recursive case
return tolower(s[0]) == tolower(s[s.length() - 1])

&& isPalindrome(s.substr(1, s.length() - 2));
}

}

70

Plan For Today
• Recap: Maps, Sets and Lexicons
• Thinking Recursively
• Examples: Factorial and Fibonacci
• Announcements
• Coding Together: Palindromes
• Bonus: Binary

Next time: More recursion

71

Overflow Slides

72

Plan For Today
• Recap: Maps, Sets and Lexicons
• Thinking Recursively
• Examples: Factorial and Fibonacci
• Announcements
• Coding Together: Palindromes
• Bonus: Binary

73

printBinary exercise
• Write a recursive function printBinary that accepts an integer

and prints that number's representation in binary (base 2).

– Example: printBinary(7) prints 111
– Example: printBinary(12) prints 1100
– Example: printBinary(42) prints 101010

– Write the function recursively and without using any loops.

place 10 1 32 16 8 4 2 1

value 4 2 1 0 1 0 1 0

printBinary

74

Case analysis
• Recursion is about solving a small piece of a large problem.

– What is 69743 in binary?
• Do we know anything about its representation in binary?

– Case analysis:
• What is/are easy numbers to print in binary?
• Can we express a larger number in terms of a smaller number(s)?

75

Seeing the pattern
• Suppose we are examining some arbitrary integer N.

– if N's binary representation is 10010101011
– (N / 2)'s binary representation is 1001010101
– (N % 2)'s binary representation is 1

– What can we infer from this relationship?

76

printBinary solution
// Prints the given integer's binary representation.
// Precondition: n >= 0
void printBinary(int n) {

if (n < 2) {
// base case; same as base 10
cout << n;

} else {
// recursive case; break number apart
printBinary(n / 2);
printBinary(n % 2);

}
}

– Can we eliminate the precondition and deal with negatives?

77

printBinary solution 2
// Prints the given integer's binary representation.
void printBinary(int n) {

if (n < 0) {
// recursive case for negative numbers
cout << "-";
printBinary(-n);

} else if (n < 2) {
// base case; same as base 10
cout << n << endl;

} else {
// recursive case; break number apart
printBinary(n / 2);
printBinary(n % 2);

}
}

