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CS 106X, Lecture 9
Fractals

reading:
Programming Abstractions in C++, Chapter 8.4
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Plan For Today
• Announcements
• Recap: Runtime and Memoization
• Fractals

– Cantor fractal
– Snowflake fractal
– Emblem fractal
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Announcements
• HW3 – Recursion – going out at 3PM today

– Fractals
– Grammar Generator
– Human Pyramid
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Recursion & Big-O
void reverseLines(ifstream& input) {

string line;
if (getline(input, line)) {

reverseLines(input);
cout << line << endl;

}
}

• What is the Big-O of the above function?
• (What is N?)

How many times is this 
function called in total?

What is the runtime of each 
individual function call?x
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Recursion & Big-O
• The runtime of a recursive function is the number of function calls 

times the work done in each function call.
• The number of calls for a branching recursive function is usually

!(#$)
where
– b is the worst-case branching factor (# recursive calls per function 

execution)
– d is the worst-case depth of the recursion (the longest path from the 

top of the recursive call tree to a base case).
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Fibonacci: Big-O
fibonacci(4)

fibonacci(3) fibonacci(2)

fibonacci(2) fibonacci(1)

fibonacci(1) fibonacci(0)

fibonacci(1) fibonacci(0)

• Each recursive call makes 2 additional recursive calls.
• The worst-case depth of the recursion is the index of the Fibonacci 

number we are trying to calculate (N).
• Therefore, the number of total calls is O(2N).
• Each individual function call does O(1) work.  Therefore, the total 

runtime is O(2N) * O(1) = O(2N).
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Recursive Tree
fibonacci(4)

fibonacci(3) fibonacci(2)

fibonacci(2) fibonacci(1)

fibonacci(1) fibonacci(0)

Is there a way to remember what 
we already computed?
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Memoized Fibonacci
// Returns the nth Fibonacci number (no error handling).
// This version uses memoization.
int fibonacci(int i, Map<int, int>& cache) {

if (i < 2) {
return i;

} else if (cache.containsKey(i)) {
return cache[i];

} else {
int result = fibonacci(i-1, cache) + fibonacci(i-2, cache);
cache[i] = result;
return result;   

}
}
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Wrapper Functions

• The above function signature isn’t ideal; it requires the client to 
know to pass in an (empty) map.

• In general, the parameters we need for our recursion will not always 
match those the client will want to pass.

• Is there a way we can remove that requirement, while still 
memoizing?

• YES!  A “wrapper” function is a function that “wraps” around the 
first call to a recursive function to abstract away any additional 
parameters needed to perform the recursion.

Map<int, int> cache;
int sixthFibonacci = fibonacci(5, cache);  // 5
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That’s a Wrap(per)!
// “Wrapper” function that returns the nth Fibonacci number.
// This version calls the recursive version with an empty cache.
int fibonacci(int i) {

Map<int, int> cache;
return fibonacci(i, cache);

}

// Recursive function that returns the nth Fibonacci number.
// This version uses memoization.
int fibonacci(int i, Map<int, int>& cache) {

if (i < 0) {
throw "Illegal negative index";

} else if (i < 2) {
return i;

} else if (cache.containsKey(i)) {
return cache[i];

} else {
int result = fibonacci(i-1, cache) + fibonacci(i-2, cache);
cache[i] = result;
return result;   

}
}
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Fractals

A fractal is a recurring graphical 
pattern.  Smaller instances of the same 
shape or pattern occur within the 
pattern itself.
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Fractals in Nature
Many natural phenomena generate fractal patterns:
1. earthquake fault lines
2. animal color patterns 
3. clouds
4. mountain ranges 
5. snowflakes
6. crystals
7. DNA
8. ... 
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Cantor Fractal
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Cantor Fractal

Parts of a cantor set image ... are Cantor set images
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Cantor Fractal

Another cantor set Another cantor set
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Level 1 Cantor Fractal
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Level n Cantor
1. Draw a line from start to finish.

2. Draw a Cantor of size n-1 2. Draw a Cantor of size n-1
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Stanford Graphics Libraries
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Stanford Graphics Libraries
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Cantor Fractal
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Snowflake
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Snowflake
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Snowflake
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Snowflake
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Snowflake
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Snowflake
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Snowflake
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Emblem Fractal
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Emblem Fractal
• We want to draw this figure at a given center and radius on-screen.
• An order-0 emblem is nothing
• An order-1 emblem is a circle of the specified size
• An order-n emblem is a circle of the specified size, containing 6 

order n-1 emblems at increments of 60 degrees around the circle 
2/3 away from the center, with 1/3 the radius.
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Recap
•Fractals

• Fractals are self-referential, and that makes for nice recursion 
problems!

• Break the problem into a smaller, self-similar part, and don't 
forget your base case!
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References and Advanced Reading

• References:
• http://www.cs.utah.edu/~germain/PPS/Topics/recursio

n.html

• Why is iteration generally better than recursion? 
http://stackoverflow.com/a/3093/561677

• Advanced Reading:

• Tail recursion: 
http://stackoverflow.com/questions/33923/what-is-tail-
recursion

• Interesting story on the history of recursion in 
programming languages: http://goo.gl/P6Einb

http://www.cs.utah.edu/~germain/PPS/Topics/recursion.html
http://stackoverflow.com/a/3093/561677
http://stackoverflow.com/questions/33923/what-is-tail-recursion
http://goo.gl/P6Einb

