
This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Keith Schwarz, Julie Zelenski, Jerry Cain, Eric Roberts, Mehran Sahami, Stuart Reges, Cynthia Lee, Marty Stepp, Ashley Taylor and others.

CS 106X, Lecture 9
Fractals

reading:
Programming Abstractions in C++, Chapter 8.4

2

Plan For Today
• Announcements
• Recap: Runtime and Memoization
• Fractals

– Cantor fractal
– Snowflake fractal
– Emblem fractal

3

Plan For Today
• Announcements
• Recap: Runtime and Memoization
• Fractals

– Cantor fractal
– Snowflake fractal
– Emblem fractal

4

Announcements
• HW3 – Recursion – going out at 3PM today

– Fractals
– Grammar Generator
– Human Pyramid

5

Plan For Today
• Announcements
• Recap: Runtime and Memoization
• Fractals

– Cantor fractal
– Snowflake fractal
– Emblem fractal

6

Recursion & Big-O
void reverseLines(ifstream& input) {

string line;
if (getline(input, line)) {

reverseLines(input);
cout << line << endl;

}
}

• What is the Big-O of the above function?
• (What is N?)

How many times is this
function called in total?

What is the runtime of each
individual function call?x

7

Recursion & Big-O
• The runtime of a recursive function is the number of function calls

times the work done in each function call.
• The number of calls for a branching recursive function is usually

!(#$)
where
– b is the worst-case branching factor (# recursive calls per function

execution)
– d is the worst-case depth of the recursion (the longest path from the

top of the recursive call tree to a base case).

8

Fibonacci: Big-O
fibonacci(4)

fibonacci(3) fibonacci(2)

fibonacci(2) fibonacci(1)

fibonacci(1) fibonacci(0)

fibonacci(1) fibonacci(0)

• Each recursive call makes 2 additional recursive calls.
• The worst-case depth of the recursion is the index of the Fibonacci

number we are trying to calculate (N).
• Therefore, the number of total calls is O(2N).
• Each individual function call does O(1) work. Therefore, the total

runtime is O(2N) * O(1) = O(2N).

9

Recursive Tree
fibonacci(4)

fibonacci(3) fibonacci(2)

fibonacci(2) fibonacci(1)

fibonacci(1) fibonacci(0)

Is there a way to remember what
we already computed?

10

Memoized Fibonacci
// Returns the nth Fibonacci number (no error handling).
// This version uses memoization.
int fibonacci(int i, Map<int, int>& cache) {

if (i < 2) {
return i;

} else if (cache.containsKey(i)) {
return cache[i];

} else {
int result = fibonacci(i-1, cache) + fibonacci(i-2, cache);
cache[i] = result;
return result;

}
}

11

Wrapper Functions

• The above function signature isn’t ideal; it requires the client to
know to pass in an (empty) map.

• In general, the parameters we need for our recursion will not always
match those the client will want to pass.

• Is there a way we can remove that requirement, while still
memoizing?

• YES! A “wrapper” function is a function that “wraps” around the
first call to a recursive function to abstract away any additional
parameters needed to perform the recursion.

Map<int, int> cache;
int sixthFibonacci = fibonacci(5, cache); // 5

12

That’s a Wrap(per)!
// “Wrapper” function that returns the nth Fibonacci number.
// This version calls the recursive version with an empty cache.
int fibonacci(int i) {

Map<int, int> cache;
return fibonacci(i, cache);

}

// Recursive function that returns the nth Fibonacci number.
// This version uses memoization.
int fibonacci(int i, Map<int, int>& cache) {

if (i < 0) {
throw "Illegal negative index";

} else if (i < 2) {
return i;

} else if (cache.containsKey(i)) {
return cache[i];

} else {
int result = fibonacci(i-1, cache) + fibonacci(i-2, cache);
cache[i] = result;
return result;

}
}

13

Plan For Today
• Announcements
• Recap: Runtime and Memoization
• Fractals

– Cantor fractal
– Snowflake fractal
– Emblem fractal

14

Fractals

A fractal is a recurring graphical
pattern. Smaller instances of the same
shape or pattern occur within the
pattern itself.

15

Fractals in Nature
Many natural phenomena generate fractal patterns:
1. earthquake fault lines
2. animal color patterns
3. clouds
4. mountain ranges
5. snowflakes
6. crystals
7. DNA
8. ...

16

Cantor Fractal

17

Cantor Fractal

Parts of a cantor set image ... are Cantor set images

18

Cantor Fractal

Another cantor set Another cantor set

19

Level 1 Cantor Fractal

20

Level n Cantor
1. Draw a line from start to finish.

2. Draw a Cantor of size n-1 2. Draw a Cantor of size n-1

21

Stanford Graphics Libraries

22

Stanford Graphics Libraries

23

Cantor Fractal

24

Plan For Today
• Announcements
• Recap: Runtime and Memoization
• Fractals

– Cantor fractal
– Snowflake fractal
– Emblem fractal

25

Snowflake

26

Snowflake

27

Snowflake

28

Snowflake

29

Snowflake

30

Snowflake

31

Snowflake

32

Plan For Today
• Announcements
• Recap: Runtime and Memoization
• Fractals

– Cantor fractal
– Snowflake fractal
– Emblem fractal

33

Emblem Fractal

34

Emblem Fractal
• We want to draw this figure at a given center and radius on-screen.
• An order-0 emblem is nothing
• An order-1 emblem is a circle of the specified size
• An order-n emblem is a circle of the specified size, containing 6

order n-1 emblems at increments of 60 degrees around the circle
2/3 away from the center, with 1/3 the radius.

35

Recap
•Fractals

• Fractals are self-referential, and that makes for nice recursion
problems!

• Break the problem into a smaller, self-similar part, and don't
forget your base case!

36

References and Advanced Reading

• References:
• http://www.cs.utah.edu/~germain/PPS/Topics/recursio

n.html

• Why is iteration generally better than recursion?
http://stackoverflow.com/a/3093/561677

• Advanced Reading:

• Tail recursion:
http://stackoverflow.com/questions/33923/what-is-tail-
recursion

• Interesting story on the history of recursion in
programming languages: http://goo.gl/P6Einb

http://www.cs.utah.edu/~germain/PPS/Topics/recursion.html
http://stackoverflow.com/a/3093/561677
http://stackoverflow.com/questions/33923/what-is-tail-recursion
http://goo.gl/P6Einb

