
Huffman Encoding and Data Compression
Handout by Julie Zelenski with minor edits by Keith Schwarz and Marty Stepp

This handout contains lots of supplemental background information about Huffman encoding and about file compression in  
general.  It should not be mandatory to read it, but you might find the information interesting, and it could help you to under -
stand the algorithm better to see more examples and discussion of it in this document.  This handout was written by previous  
106B instructors, so it may not perfectly match the assignment this quarter.  When in doubt, follow the spec.
In the early 1980s, personal computers had hard disks that were no larger than 10MB; today, the puniest of  
disks are still measured in hundreds of gigabytes.  Even though hard drives are getting bigger, the files we  
want to store (funny pictures of cats, videos, music and so on) seem to keep pace with that growth which  
makes even today's gargantuan disk seem too small to hold everything.

One technique to use our storage more optimally is to compress the files.  By taking advantage of redund -
ancy or patterns, we may be able to "abbreviate" the contents in such a way to take up less space yet main -
tain the ability to reconstruct a full version of the original when needed.  Such compression could be useful  
when trying to cram more things on a disk or to shorten the time needed to copy/send a file over a net -
work.

There are compression algorithms that you may already have heard of.  Some compression formats, such 
as JPEG, MPEG, or MP3, are specifically designed to handle a particular type of data file.  They tend to 
take advantage of known features of that type of data (such as the propensity for pixels in an image to be  
same or similar colors to their neighbors) to compress it.  Other tools such as compress, zip, or pack 
and programs like StuffIt or ZipIt can be used to compress any sort of file.  These algorithms have no 
a priori expectations and usually rely on studying the particular data file contents to find redundancy and 
patterns that allow for compression.

Some of the compression algorithms (e.g. JPEG, MPEG) are lossy—decompressing the compressed result 
doesn't recreate a perfect copy of the original.  Such an algorithm compresses by "summarizing" the data. 
The summary retains the general structure while discarding the more minute details.  For sound, video, and 
images, this imprecision may be acceptable because the bulk of the data is maintained and a few missed  
pixels or milliseconds of video delay is no big deal.  For text data, though, a lossy algorithm usually isn't ap-
propriate.  An example of a lossy algorithm for compressing text would be to remove all the vowels.  Com-
pressing the previous sentence by this scheme results in: 

n xmpl f  lssy lgrthm fr cmprssng txt wld b t rmv ll th vwls.

This shrinks the original 87 characters down to just 61 and requires only 70% of the original space.  To de-
compress, we could try matching the consonant patterns to English words with vowels inserted, but we 
cannot reliably reconstruct the original in this manner.  Is the compressed word "fr" an abbreviation for  
the word "four" or the word "fir" or "far"?  An intelligent reader can usually figure it out by context, but,  
alas, a brainless computer can't be sure and would not be able to faithfully reproduce the original.  For files  
containing text, we usually want a lossless scheme so that there is no ambiguity when re-creating the original 
meaning and intent. 

An Overview
The standard ASCII character encoding uses the same amount of space (one byte or eight bits, where each 
bit is either a 0 or a 1) to store each character.  Common characters don’t get any special treatment; they  
require the same 8 bits that are used for much rarer characters such as 'ü' or '¥'.  A file of 1000 characters  
encoded using the ASCII scheme will take 1000 bytes (8000 bits); no more, no less, whether it be a file of  
1000 spaces to a file containing 4 instances each of 250 different characters.  A fixed-length encoding like 
ASCII is convenient because the boundaries between characters are easily determined and the pattern used 
for each character is completely fixed (i.e. 'a' is always exactly 97).

- 1 - 



In practice, it is not the case that all 256 characters in the ASCII set occur with equal frequency.  In an  
English text document, it might be the case that only 90 or so distinct characters are used at all (meaning  
166 characters in the ASCII never even appear) and within those 90 there are likely to be significant differ-
ences in the character counts.  The Huffman encoding scheme takes advantage of the disparity between  
frequencies and uses less storage for the frequently occurring characters at the expense of having to use 
more storage for each of the more rare characters.  Huffman is an example of a variable-length encoding—
some characters may only require 2 or 3 bits and other characters may require 7, 10, or 12 bits.  The sav-
ings from not having to use a full 8 bits for the most common characters makes up for having to use more  
than 8 bits for the rare characters and the overall effect is that the file almost always requires less space.

ASCII Encoding
The example we’re going to use throughout this handout is encoding the particular string "happy hip 
hop" (don’t ask me what it means, I just made it up!).  Using the standard ASCII encoding, this 13-char -
acter string requires 13*8 = 104 bits total.  The table below shows the relevant subset of the standard AS -
CII table. 

   char            ASCII bit pattern (binary)
h 104 01101000
a 97 01100001
p 112 01110000
y 121 01111001
i 105 01101001
o 111 01101111
space 32 00100000

The string  "happy hip hop" would be encoded in ASCII as  104 97 112 112 121 32 104 105 
112 32 104 111 112.  Although not easily readable by humans, it would be written as the following  
stream of bits (each byte is boxed to show the boundaries):

01101000 01100001 01110000 01110000 01111001 00100000 01101000

01101001 01110000 00100000 01101000 01101111 01110000

To decode such a string (i.e. translate the binary encoding back to the original characters), we merely need 
to break the encoded stream of bits up into 8-bit bytes, and then convert each byte using the fixed ASCII 
encoding.  The first 8 bits are 01101000, which is the pattern for number 104, and position 104 in the 
ASCII set is assigned to lowercase 'h'.  A file encoded in ASCII does not require any additional informa-
tion to be decoded since the mapping from binary to characters is the same for all files and computers.

A More Compact Encoding
The first thing you might notice about ASCII encoding is that using 8 bits per character can be excessively  
generous.  Although it allows for the possibility of representing 256 different characters, we only have sev-
en distinct characters in the phrase we’re trying to encode, and thus could distinguish among these patterns 
with fewer bits.  We could set up a special coding table just for this phrase using 3 bits for each character.  
Creating such an encoding is trivial: we create a list of the unique characters, and then go through and as-
sign each a distinct encoded number from 0 to N-1.  For example, here is one possible 3-bit encoding (of 
the 7! possible permutations):

- 2 - 



   char          number      bit pattern
h 0 000
a 1 001
p 2 010
y 3 011
i 4 100
o 5 101
space 6 110

Using this table, "happy hip hop" is encoded as 0 1 2 2 3 6 0 4 2 6 0 5 2, or in binary:

000 001 010 010 011 110 000 100 010 110 000 101 010

Using three bits per character, the encoded string requires 39 bits instead of the original 104 bits, com-
pressing to 38% of its original size. 

However, to decode this binary representation, one would need to know the special mapping used, since  
using  000 for  'h' is not standard practice and in fact, in this scheme, each compressed string uses its  
own special-purpose mapping that is not necessarily like any other.  Some sort of header or auxiliary file  
would have to be attached or included with the encoded representation that provides the mapping inform-
ation.  That header would take up some additional space that would cut into our compression savings.  For 
a large enough file, though, the savings from trimming down the per-character cost would likely outweigh  
the expense of the additional table storage.

A Variable-Length Encoding
What if we drop the requirement that all characters take up the same number of bits?  By using fewer bits 
to encode characters like 'p',  'h', and space that occur frequently and more to encode characters like 
'y' and 'o' that occur less frequently, we may be able to compress even further.  We’ll later show how 
we generated the table below, but for now just take our word for it that is represents an optimal Huffman  
encoding for the string "happy hip hop":

     char        bit pattern
h 01
a 000
p 10
y 1111
i 001
o 1110
space 110

Each character has a unique bit pattern encoding, but not all characters use the same number of bits. The  
string "happy hip hop" encoded using the above variable-length code table is:

01 000 10 10 1111 110 01 001 10 110 01 1110 10

The encoded phrase requires a total of 34 bits, shaving a few more bits from the fixed-length version. 
What  is  tricky  about a  variable-length code is  that  we no longer  can easily  determine  the  boundaries 
between characters in the encoded stream of bits when decoding.  I boxed every other character’s bit pat-
tern above to help you visualize the encoding, but without this aid, you might wonder how you will know 
whether the first character is encoded with the two bits 01 or the three bits 010 or perhaps just the first 
bit 0?  If you look at the encoding in the table above, you will see that only one of these options is pos-
sible.  There is no character that encodes to the single bit 0 and no character that encodes to the sequence 
010 or 0100 or 01000 for that matter.  There is, however, a character that encodes to 01 and that is 

- 3 - 



'h'.  One of the important features of the table produced by Huffman coding is the  prefix property: no 
character’s encoding is a prefix of any other (i.e. if 'h' is encoded with 01 then no other character’s en-
coding will start with 01 and no character is encoded to just 0).  With this guarantee, there is no ambiguity 
in determining where the character boundaries are.  We start reading from the beginning, gathering bits in  
a sequence until we find a match.  That indicates the end of a character and we move on to decoding the 
next character.

Like the special-purpose fixed-length encoding, a Huffman encoded file will need to provide a header with 
the information about the table used so we will be able to decode the file. Each file’s table will be unique 
since it is explicitly constructed to be optimal for that file's contents.

Encoding Seen as a Tree
One way to visualize any particular encoding is to diagram it as a binary tree.  Each character is stored at a  
leaf node.   Any particular character encoding is obtained by tracing the path from the root to its node.  
Each left-going edge represents a 0, each right-going edge a 1.   For example, this tree diagrams the com-
pact fixed-length encoding we developed previously:

h a p y i o _o

h
0   0   0   0   

0   

0   

0   

   1    1    1

   1    1

   1

In the above tree, the encoding for 'y' can be determined by tracing the path from the root to the 'y' 
node.  Going left then right then right again represents a 011 encoding. 

A similar, much larger tree could be constructed for the entire ASCII set, it would be 8 levels deep and at  
the bottom would be 256 leaf nodes, one for each character.  The node for the character  'a' (97 or 
01100001 in binary) would be at the end of the left-right-right-left-left-left-left-right path from the root.  
We're starting to see why they're called binary trees!

Now, let’s diagram such a tree for the variable-length Huffman encoding we were using: 

a i _

h p
0   0   

0   

0   

0   

   1

   1    1

   1

o y

   1

   10   

- 4 - 



The path to 'h' is just left right or 01, the path to 'y' is right-right-right-right or 1111. Notice that the 
prefix property of the Huffman encoding is visually represented by the fact that characters only occupy leaf 
nodes (i.e. those nodes which are not a prefix of any further nodes). 

The tree shown above for "happy hip hop" is, in fact, an optimal tree—there are no other tree encod-
ings by character that use fewer than 34 bits to encode this string.  There are other trees that use exactly 34  
bits; for example you can simply swap any sibling nodes in the above tree and get a different but equally  
optimal encoding. 

The Huffman tree doesn’t appear as balanced as the fixed-length encoding tree.  You’ve heard in our dis-
cussion on binary search trees that an unbalanced tree is bad thing. However, when a tree represents a 
character encoding, that lopsidedness is actually a good thing.  The shorter paths represent those frequently 
occurring characters that are being encoded with fewer bits and the longer paths are used for more rare  
characters.  Our plan is to shrink the total number of bits required by shortening the encoding for some 
characters at the expense of lengthening others.  If all characters occurred with equal frequency, we would  
have a balanced tree where all paths were roughly equal.  In such a situation we can't achieve much com-
pression since there are no real repetitions or patterns to be exploited.

Decoding Using the Tree
A particularly compelling reason to diagram an encoding as a tree is the ease with which it supports decod-
ing.  Let's use the fixed-length tree to decode the stream of bits 011101010010011. Start at the be-
ginning of the bits and at the root of the tree. The first bit is 0, so trace one step to the left, the next bit is 
1, so follow right from there, the following bit is 1, so take another right. We have now landed at a leaf, 
which indicates that we have just completed reading the bit pattern for a single character. Looking at the 
leaf's label, we learn we just read a 'y'. Now we pick up where we left off in the bits and start tracing 
again from the root. Tracing 101 leads us to 'i'. Continuing through the remaining bits and we decode 
the string "yippy".

The same path-following strategy works equally well on the Huffman tree.  Decoding the stream of bits 
111100110101111 will first trace four steps down to the left to hit the 'y' leaf, then a left-left-right 
path to the 'i' leaf and so on.  Again the decoded string is "yippy".  Even though the encoded charac-
ters don't start and end at evenly spaced boundaries in the Huffman-encoded bits, we have no trouble de-
termining where each character ends because we can easily detect when the path hits a leaf node in the en-
coding tree.

Generating an Optimal Tree
The pertinent question now: how is that special tree constructed? We need an algorithm for constructing 
the optimal tree giving a minimal per-character encoding for a particular file.  The algorithm we will use 
here was invented by David Huffman in 1952. 

To begin generating the Huffman tree, each character gets a weight equal to the number of times it occurs  
in the file.  For example, in the "happy hip hop" example, the character 'p' has weight 4, 'h' has 
weight 3, the space has weight 2, and the other characters have weight 1.  Our first task is to calculate these  
weights, which we can do with a simple pass through the file to get the frequency counts.  For each charac-
ter, we create an unattached tree node containing the character value and its corresponding weight.  You  
can think of each node as a tree with just one entry.  The idea is to combine all these separate trees into an  
optimal tree by wiring them together from the bottom upwards.  The general approach is as follows:

- 5 - 



1. Create a collection of singleton trees, one for each character, with weight equal to the character fre-
quency.  

2. From the collection, pick out the two trees with the smallest weights and remove them. Combine  
them into a new tree whose root has a weight equal to the sum of the weights of the two trees and  
with the two trees as its left and right subtrees.

3. Add the new combined tree back into the collection.

4. Repeat steps 2 and 3 until there is only one tree left.

5. The remaining node is the root of the optimal encoding tree. 

Sounds simple, doesn't it?  Let's walk through building the optimal tree for our example string "happy 
hip hop".  We start with this collection of singletons, the weight of each node is labeled underneath:

p h _ a i o y
4 3 2 1 1 1 1

We start by choosing the two smallest nodes.  There are four nodes with the minimal weight of one, it  
doesn't matter which two we pick.  We choose 'o' and 'y' and combine them into a new tree whose 
root is the sum of the weights chosen.  We replace those two nodes with the combined tree.  The nodes  
remaining in the collection are shown in the light gray box at each stage.

p h _ a i
4 3 2 1 1

o y
1 1

2

Now we repeat that step, this time there is no choice for the minimal nodes, it must be 'a' and 'i'.  We 
take those out and combine them into a weight 2 tree.  Note how the collection of nodes shrinks by one 
each iteration (we remove two nodes and add a new one back in).

p h _

a i
4 3 2

1 1
o y
1 1

2 2

Again, we pull out the two smallest nodes and build a tree of weight 4:

p h

a i
4 3

1 1

2
_
2

o y
1 1

2

4

- 6 - 



Note when we build a combined node, it doesn’t represent a character like the leaf nodes do.  These interior  
nodes are used along the paths that eventually lead to valid encodings, but the prefix itself does not encode a  
character.

One more iteration combines the weight 3 and 2 trees into a combined tree of weight 5:

p
4

_
2

o y
1 1

2

4
h

a i
3

1 1

2

5

Combining the two 4s gets a tree of weight 8: 

h

a i
3

1 1

2

5
p
4

_
2

o y
1 1

2

4

8

And finally, we combine the last two to get our final tree.  The root node of the final tree will always have a 
weight equal to the number of characters in the input file.

- 7 - 

h

a i
3

1 1

2

5
p
4

_
2

o y
1 1

2

4

8

13



Note that this tree is different from the tree on page 4, and has slightly different bit patterns, but both trees  
are optimal and the total number of bits required to encode "happy hip hop" is the same for either 
tree.  When we have choices among equally weighted nodes (such as in the first step choosing among the  
four characters with weight 1) picking a different two will result in a different, but still optimal, encoding.  
Similarly when combining two subtrees, it is as equally valid to put one of the trees on the left and the oth-
er on the right as it is to reverse them.

Remember that it is essential that you use the same tree to do both encoding and decoding of your files. 
Since each Huffman tree creates a unique encoding of a particular file, you need to ensure that your decod-
ing algorithm generates the exact same tree, so that you can get back the file.

Practical Considerations: The Pseudo-EOF
The preceding discussion of Huffman coding is correct from a theoretical perspective, but there are a few 
real-world details we need to address before moving on.

One important concern is what happens when we try to store a Huffman-encoded sequence on-disk in a  
file.  Each file on your computer is typically stored as a number of bytes (groups of eight bits); files are  
usually measured in “megabytes” and “gigabytes” rather than “megabits” or “gigabits.”  As a result, if you 
try to write a Huffman-encoded string of bits into a file, if you don't have exactly a multiple of eight bits in  
your encoding, the operating system will typically pad the rest of the bits with random bits.  For example,  
suppose that we want to encode the string “ahoy” using the above Huffman tree.  This results in the fol -
lowing sequence of bits:

1101001100111
This is exactly thirteen bits, which means that, when stored on-disk, the sequence would be padded with 
three extra random bits.  Suppose that those bits are 111.  In that case, the bit sequence would be written 
to disk as

1101001100111111
If we were to then load this back from disk and decode it into a sequence of characters, we would get the  
string “ahoyi,” which is not the same string that we started with!  Even worse, if those random bits end up  
being 000, then the stored bit sequence would be

11101001100111000
The problem is that as we decode this, we read the first thirteen bits back as “ahoy,” but encounter an er -
ror when reading the last three bits because 000 is not a character in our encoding scheme.

To fix this problem, we have to have some way of knowing when we've finished reading back all of the 
bits that encode our sequence.  One way of doing this is to transform our original input string by putting 
some special marker at the end.  This marker won't appear anywhere else in the string and serves purely as  
an indicator that there is nothing left to read.  For example, we might actually represent the string “happy  
hip hop” as “happy hip hop■”, where ■ marks the end of the input.  When we build up our Huffman en-
coding tree for this string, we will proceed exactly as before, but would add in an extra node for the ■  
marker.  Here is one possible encoding tree for the characters in this new string:

- 8 - 



p
4

2

4

8
h
3

■
1

_
2

3

6

14

a i
1 1

2
o y
1 1

 Now, if we want to encode “happy hip hop■”, we get the following bitstring:
001100101011110110011011001100111010010

This does not come out to a multiple of eight bits (specifically, it's 39 bits long), which means that it will be  
padded with extra bits when stored on-disk.  However, this is of no concern to us – because we have writ -
ten the ■ marker to the end of the string, as we're decoding we can tell when to stop reading bits.  For ex -
ample, here is how we might decode the above string:

00 H
1100 A
10 P
10 P
1111 Y
011
00 H
1101 I
10 P
011
00 H
1110 O
10 P
010 ■
0 Extra bits ignored; we knew to stop when seeing ■

This ■ character is called a pseudo-end-of-file character or pseudo-EOF character, since it marks where the logical 
end of the bit stream is, even if the file containing that bit stream contains some extra garbage bits at the 
end.

When you actually implement Huffman encoding in the assignment, you will have to make sure to insert a  
pseudo-EOF character into your encoding tree and will have to take appropriate steps to ensure that you  
stop decoding bits when you reach it.

- 9 - 



Practical Considerations: The Encoding Table
There is one last issue we have not discussed yet.  Suppose that I want to compress a message and send it  
to you.  Using Huffman coding, I can convert the message (plus the pseudo-EOF) into a string of bits and 
send it to you.  However, you cannot decompress the message, because you don't have the encoding tree  
that I used to send the message.

There are many ways to resolve this.  We could agree on an encoding tree in advance, but this only works 
if we already know the distribution of the letters in advance.  This might be true if we were always com-
pressing normal English text, but in general is not possible to do.

A second option, and the option used in the assignment, is to prefix the bit sequence with a header con -
taining enough information to reconstruct the Huffman encoding tree.  There are many options you have  
for reading and writing the encoding table.  You could store the table at the head of the file in a long, hu -
man-readable string format using the ASCII characters '0' and '1', one entry per line, like this:

h = 01
a = 000
p = 10
y = 1111
... 

Reading this back in would allow you to recreate the tree path by path.  You could have a line for every  
character in the ASCII set; characters that are unused would have an empty bit pattern.  Or you could con-
serve space by only listing those characters that appear in the encoding.  In such a case you must record a  
number that tells how many entries are in the table or put some sort of sentinel or marker at the end so 
you know when you have processed them all.

As an alternative to storing sequences of ASCII  '0' and  '1' characters for the bit patterns, you could 
store just the character frequency counts and rebuild the tree again from those counts in order to decom-
press.  Again we might include the counts for all characters (including those that are zero) or optimize to 
only record the non-zero ones.  Here is how we might encode the non-zero counts for the "happy hip 
hop" string (the 7 at the front says there are 7 entries to follow—6 alphabetic characters, and space):

7 h3 a1 p4 y1  2 i1 o1
Note that in the current version of the assignment, the exact header format is specified, and you should  
follow the header format from the spec.

Greedy Algorithms
Huffman's algorithm is an example of a greedy algorithm.  In general, greedy algorithms use small-grained, 
or local minimal/maximal choices in attempt to result in a global minimum/maximum.  At each step, the  
algorithm makes the near choice that appears to lead toward the goal in the long-term.  In Huffman's case,  
the insight for its strategy is that combining the two smallest nodes makes both of those character encod-
ings one bit longer (because of the added parent node above them) but given these are the most rare char -
acters, it is a better choice to assign them longer bit patterns than the more frequent characters.  The Huff -
man strategy does, in fact, lead to an overall optimal character encoding.

Even when a greedy strategy may not result in the overall best result, it still can be used to approximate  
when the optimal solution requires an exhaustive or expensive traversal.  In a time or space-constrained  
situation, we might be willing to accept the quick and easy-to-find greedy solution as an approximation.

Copyright © Stanford University and Marty Stepp, licensed under Creative Commons Attribution 2.5 License.  All rights reserved. 

- 10 - 


	An Overview
	ASCII Encoding
	A More Compact Encoding
	A Variable-Length Encoding
	Encoding Seen as a Tree
	Decoding Using the Tree
	Generating an Optimal Tree
	Practical Considerations: The Pseudo-EOF
	Practical Considerations: The Encoding Table
	Greedy Algorithms

