
	1	

Nick Troccoli Section #2
CS 106X Week 3

Section	Handout	#2:	Recursion
Based on handouts by various current and past CS106B/X instructors and TAs.

Extra practice problems: CodeStepByStep – Sequence, Hanoi; Textbook – chapter 7 exercises

We’ll be getting some practice with approaching problems recursively during this week’s section. To
start off, recall that this is our checklist for writing recursive functions from lecture. Please put it to
use when writing recursive code on this handout (problems #3-7)!

Recursion Checklist

r Find what information we need to keep track of. What
inputs/outputs are needed to solve the problem at each step? Do we
need a wrapper function?

r Find your base case(s). What are the simplest (non-recursive)
instance(s) of this problem?

r Find your recursive step. How can this problem be solved in terms
of one or more simpler instances of the same problem that lead to
a base case?

r Ensure every input is handled. Do we cover all possible cases? Do
we need to handle errors?

1. Recursion code trace (recursion, tracing)
For each call to the following function, indicate what value is returned.

void mysteryTrace(int x, int y) {
 if (y == 1) {
 cout << x;
 } else {
 cout << (x * y) << ", ";
 mysteryTrace(x, y - 1);
 cout << ", " << (x * y);
 }
}

 // Call Output

 mysteryTrace(4, 1) ____________________

 mysteryTrace(8, 2) ____________________

 mysteryTrace(3, 4) ____________________

	2	

2. Debugging recursion (recursion, debugging)
The following function recursively finds the maximum integer in a Vector between two indices (inclusive)
by taking the maximum from the left half, the maximum from the right half, and then returning the max of
those two. For example, if a Vector variable named vec contained the values {1, 2, 4, 2, 3, 5}, the
call of recursiveMax(vec, 0, 2) looks at the elements in indices 0, 1, and 2, and returns 4 because it
is the largest number in those indices. What is the bug in this code?

int recursiveMax(const Vector<int>& v, int left, int right) {
 if (left == right) {
 return v[left];
 } else if (left < right) {
 int middle = (left + right) / 2;
 int leftMax = recursiveMax(v, left, middle);
 int rightMax = recursiveMax(v, middle, right);
 if (leftMax > rightMax) {
 return leftMax;
 } else {
 return rightMax;
 }
 } else {
 throw "Invalid range.";
 }
}

3. cannonballs (recursion)

You are a pirate sailing the seven seas, and you would like to know how many cannonballs you have stored
on deck. You also happen to be learning about recursion. Write a recursive function named cannonballs
that returns the number of cannonballs in a square pyramid of height n, just like how you store them on deck.
For example, in a square pyramid of height 3, the bottom layer has 9 cannonballs, the middle layer has 4,
and there is one cannonball on top, so cannonballs(3) returns 14. If passed a negative number, your
function should throw the invalid parameter as an int exception.

Checklist: q Inputs/outputs/wrapper? q Base case(s) q Recursive step(s) q Handles all input

4. reverseString (recursion, strings)
Write a recursive function reverse that takes in a string s and returns a string with the same characters in
reverse order. For example, reverse("Hi, you!") returns "!uoy ,iH". Don’t modify the original string.

Checklist: q Inputs/outputs/wrapper? q Base case(s) q Recursive step(s) q Handles all input

Bonus: What data structure might be helpful if you were to solve this problem iteratively?

5. doubleStack (recursion, Stack)

Write a recursive function named doubleStack that takes a reference to a Stack<int> called s and replaces
each integer with two consecutive copies of that integer. For example, if s stores {1, 2, 3}, then
doubleStack(s) changes it to {1, 1, 2, 2, 3, 3}.

Checklist: q Inputs/outputs/wrapper? q Base case(s) q Recursive step(s) q Handles all input

	3	

6. combinations (recursion)

Write a recursive function named combinations that accepts integers n and k and returns "n choose k," which
is the number of unique combinations of k values taken from n values. This can be expressed using one of
these formulas:

!	#		$	% =
#!

$!(#)$)!
 or !	#	$ % = !	#)+	$)+ % +	!

	#)+	
$ %

Checklist: q Inputs/outputs/wrapper? q Base case(s) q Recursive step(s) q Handles all input

Bonus: memoization. You can speed up a recursive function by caching previously calculated or returned
values in a structure such as a map, vector, etc. This is called memoization. Fortunately, it often does not
require much additional code beyond adding an extra base case and managing the cache when recursing.
Modify your solution to this problem to memoize it.

Bonus Checklist: q Inputs/outputs/wrapper? q Base case(s) q Recursive step(s) q Handles all input

7. isSubsequence (recursion)

Write a recursive function named isSubsequence that takes two strings and returns true if the second
string is a subsequence of the first string and false otherwise. A string is a subsequence of another if it
contains the same letters in the same order, but not necessarily consecutively. You can assume both strings
are already entirely lowercase. For example:

isSubsequence(“computer”, “core”) false
isSubsequence(“computer, “cope”) true
isSubsequence(“computer”, “computer”) true
Checklist: q Inputs/outputs/wrapper? q Base case(s) q Recursive step(s) q Handles all input

8. reverseMap (Map, extra practice)
Write a function named reverse that takes a Map from ints to strings and returns a Map with the associations
reversed. For example, if a Map variable named map stores {1:"a", 2:"b", 3:"c"}, the call of
reverse(map) should return {"a":1, "b":2, "c":3}. If there are duplicate values (k1, v) and (k2, v) in
the original map, your returned map may contain either (v, k1) or (v, k2).

