Section #7 Solutions

Based on handouts by various current and past CS106B/X instructors and TAs.

1. Graph properties (graphs)

<table>
<thead>
<tr>
<th>Graph 1:</th>
<th>directed, unweighted, not connected, cyclic</th>
</tr>
</thead>
<tbody>
<tr>
<td>• degrees: A=(in 0 out 2), B=(in 2 out 1), C=(in 1 out 1), D=(in 2 out 1), E=(in 2 out 2), F=(in 2 out 1), G=(in 2 out 1), H=(in 2 out 2), I=(in 0 out 2)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Graph 2:</th>
<th>undirected, unweighted, connected, acyclic</th>
</tr>
</thead>
<tbody>
<tr>
<td>• degrees: A=1, B=3, C=1, D=2, E=2, F=1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Graph 3:</th>
<th>directed, unweighted, not connected, cyclic</th>
</tr>
</thead>
<tbody>
<tr>
<td>• degrees: A=(in 1 out 2), B=(in 3 out 1), C=(in 0 out 1), D=(in 2 out 1), E=(in 1 out 2)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Graph 4:</th>
<th>undirected, weighted, not connected, cyclic</th>
</tr>
</thead>
<tbody>
<tr>
<td>• degrees: A=2, B=2, C=2, D=1, E=1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Graph 5:</th>
<th>undirected, unweighted, connected, cyclic</th>
</tr>
</thead>
<tbody>
<tr>
<td>• degrees: A=4, B=4, C=2, D=3, G=4, H=3, I=2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Graph 6:</th>
<th>directed, weighted, not connected (weakly connected), cyclic</th>
</tr>
</thead>
<tbody>
<tr>
<td>• degrees: A=(in 2 out 2), B=(in 2 out 3), C=(in 2 out 3), D=(in 2 out 0), E=(in 2 out 2), F=(in 3 out 2), G=(in 1 out 2)</td>
<td></td>
</tr>
</tbody>
</table>

2. Depth-first search (graphs)

<table>
<thead>
<tr>
<th>Graph 1: A to B:</th>
<th>{A, B}</th>
</tr>
</thead>
<tbody>
<tr>
<td>A to C:</td>
<td>{A, B, E, F, C}</td>
</tr>
<tr>
<td>A to D:</td>
<td>{A, B, E, D}</td>
</tr>
<tr>
<td>A to E:</td>
<td>{A, B, E}</td>
</tr>
<tr>
<td>A to F:</td>
<td>{A, B, E, F}</td>
</tr>
<tr>
<td>A to G:</td>
<td>{A, B, E, D, G}</td>
</tr>
<tr>
<td>A to H:</td>
<td>{A, B, E, D, G, H}</td>
</tr>
<tr>
<td>A to I:</td>
<td>no path</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Graph 6: A to B:</th>
<th>{A, C, B}</th>
</tr>
</thead>
<tbody>
<tr>
<td>A to C:</td>
<td>{A, C}</td>
</tr>
<tr>
<td>A to D:</td>
<td>{A, C, D}</td>
</tr>
<tr>
<td>A to E:</td>
<td>{A, C, B, F, E}</td>
</tr>
<tr>
<td>A to F:</td>
<td>{A, C, B, F}</td>
</tr>
<tr>
<td>A to G:</td>
<td>{A, C, G}</td>
</tr>
</tbody>
</table>

3. Breadth-first search (graphs)

Paths that are shorter here than in DFS are underlined.

<table>
<thead>
<tr>
<th>Graph 1: A to B:</th>
<th>{A, B}</th>
</tr>
</thead>
<tbody>
<tr>
<td>A to C:</td>
<td>{A, B, E, F, C}</td>
</tr>
<tr>
<td>A to D:</td>
<td>{A, D}</td>
</tr>
<tr>
<td>A to E:</td>
<td>{A, B, E}</td>
</tr>
<tr>
<td>A to F:</td>
<td>{A, B, E, F}</td>
</tr>
<tr>
<td>A to G:</td>
<td>{A, D, G}</td>
</tr>
<tr>
<td>A to H:</td>
<td>{A, D, G, H}</td>
</tr>
<tr>
<td>A to I:</td>
<td>no path</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Graph 6: A to B:</th>
<th>{A, C, B}</th>
</tr>
</thead>
<tbody>
<tr>
<td>A to C:</td>
<td>{A, C}</td>
</tr>
<tr>
<td>A to D:</td>
<td>{A, C, D}</td>
</tr>
<tr>
<td>A to E:</td>
<td>{A, E}</td>
</tr>
<tr>
<td>A to F:</td>
<td>{A, E, F}</td>
</tr>
<tr>
<td>A to G:</td>
<td>{A, C, G}</td>
</tr>
</tbody>
</table>
4. Minimum weight paths (graphs)

Paths with a lower weight here than in problems 2 or 3 are underlined.

In graph 6:
A to B: \{A, E, F, B\}, weight=5
A to C: \{A, E, F, B, C\}, weight=6
A to D: \{A, E, F, B, C, G, D\}, weight=12
A to E: \{A, E\}, weight=1
A to F: \{A, E, F\}, weight=3
A to G: \{A, E, F, B, C, G\}, weight=11

5. Dijkstra’s and A* (graphs)

Dijkstra’s: (graph represented here by \{vertex1:minCost,prevVertex, vertex2:minCost,prevVertex, etc.\})

\[
\begin{align*}
\text{graph} : & \{A:0,/, B:\text{inf},/, C:\text{inf},/, D:\text{inf},/, E:\text{inf},/, F:\text{inf},/, G:\text{inf},/\} \\
p\text{queue} : & \{A:0\} \\
\text{remove A, process neighbors B/C/E, update B cost to 4, C to 5, E to 1} \\
\text{graph} : & \{A:0,/, B:4,A, C:5,A, D:\text{inf},/, E:1,A, F:\text{inf},/, G:\text{inf},/\} \\
p\text{queue} : & \{E:1, B:4, C:5\} \\
\text{remove E, process neighbor F, update F cost to 10} \\
\text{graph} : & \{A:0,/, B:4,A, C:5,A, D:\text{inf},/, E:1,A, F:10,E, G:\text{inf},/\} \\
p\text{queue} : & \{B:4, C:5, F:10\} \\
\text{remove B, process neighbors C/F, update F cost to 6} \\
\text{graph} : & \{A:0,/, B:4,A, C:5,A, D:\text{inf},/, E:1,A, F:6,B, G:\text{inf},/\} \\
p\text{queue} : & \{C:5, F:6\} \\
\text{remove C, process neighbors D/G, update D cost to 12, G cost to 8} \\
\text{graph} : & \{A:0,/, B:4,A, C:5,A, D:12,C, E:1,A, F:6,B, G:8,C\} \\
p\text{queue} : & \{F:6, G:8, D:12\} \\
\text{remove F ... no unprocessed neighbors, no updates.} \\
\text{remove G, process neighbor D, update D cost to 9} \\
\text{graph} : & \{A:0,/, B:4,A, C:5,A, D:9,G, E:1,A, F:6,B, G:8,C\} \\
p\text{queue} : & \{D:9\} \\
\text{remove D... no unprocessed neighbors, no updates.}
\end{align*}
\]

Final paths from Dijkstra’s:
A to B: \{A, B\}, cost=4
A to C: \{A, C\}, cost=5
A to D: \{A, C, G, D\}, cost=9
A to E: \{A, E\}, cost=1
A to F: \{A, B, F\}, cost=6
A to G: \{A, C, G\}, cost=8

Because of the heuristic, A* would preferentially pursue paths that are in the general direction of the target vertices over paths that are generally in the wrong spatial direction. Yes, A* will always find the same path as Dijkstra’s (A* would generally just do it faster).
6. kthLevelFriends (graphs)

// approach 1: BFS
Set<Vertex*> kthLevelFriendsBFS(BasicGraph& graph, Vertex* v, int k) {
 Set<Vertex*> result;
 HashMap<Vertex*, int> distances;
 Queue<Vertex*> q;

 // initialize BFS
 Vertex* curr = v;
 q.enqueue(curr);
 distances[curr] = 0;
 while(!q.isEmpty()){
 curr = q.dequeue();
 if (distances[curr] == k){
 result += curr;
 }
 if (distances[curr] > k) {
 break;
 }
 for (Vertex* buddy : graph.getNeighbors(curr)) {
 if (!distances.containsKey(buddy)){
 distances[buddy] = distances[curr] + 1;
 q.enqueue(buddy);
 }
 }
 }
 return result;
}

// approach 2: DFS
void kthLevelDFSHelper(BasicGraph& graph, Vertex* v, Set<Vertex*>& potentialKthFriends, Set<Vertex*>& tooShort, int k) {
 // base case: found a (potential) kth level neighbor, so add it to that set!
 if (k == 0) {
 potentialKthFriends.add(v);
 return;
 }
 // non-base case: a path with fewer than k hops exists to this vertex
 // its extended neighbors might be kth level friends even though this vertex is not one
 if (k > 0) {
 tooShort.add(v);
 }
 // recursive step: explore all of v's neighbors
 for (Vertex* neighbor : graph.getNeighbors(v)) {
 kthLevelDFSHelper(graph, neighbor, potentialKthFriends, tooShort, k - 1);
 }
}

Set<Vertex*> kthLevelFriendsDFS(BasicGraph& graph, Vertex* v, int k) {
 Set<Vertex*> potentialKthFriends;
 Set<Vertex*> tooShort;
 kthLevelDFSHelper(graph, v, potentialKthFriends, tooShort, k); //vertices accessible via paths shorter than k hops should be excluded from result
 return potentialKthFriends - tooShort;
}
7. hasCycle (graphs)

```cpp
bool isReachable(Vertex* v, Set<Vertex*>& activelyBeingVisited,
                 Set<Vertex*>& previouslyVisited) {
    if (activelyBeingVisited.contains(v)) {
        return true;
    }
    if (previouslyVisited.contains(v)) {
        return false;
    }
    activelyBeingVisited += v;
    for (Edge* edge : v->arcs) {
        if (isReachable(edge->finish, activelyBeingVisited, previouslyVisited)) {
            return true;
        }
    }
    activelyBeingVisited -= v;
    previouslyVisited += v;
    return false;
}

bool hasCycle(BasicGraph& graph) {
    Set<Vertex*> previouslyVisited;
    Set<Vertex*> toBeVisited = graph.getVertexSet();
    while (!toBeVisited.isEmpty()) {
        Vertex* front = toBeVisited.first();
        Set<Vertex*> activelyBeingVisited;
        if (isReachable(front, activelyBeingVisited, previouslyVisited)) {
            return true;
        }
        toBeVisited -= previouslyVisited;
    }
    return false;
}
```

8. findMinimumVertexCover (graphs)

```cpp
void findCoverHelper(BasicGraph& graph, Set<Vertex*>& chosen, Set<Edge*>& coveredEdges,
                     Vector<Vertex*>& allVertices, int index, Set<Vertex*>& best) {
    if (chosen.size() >= best.size()) {
        return;          // base case: current cover too large
    } else if (coveredEdges.size() == graph.getEdgeSet().size()) {
        best = chosen;   // base case: found new smaller cover w/all edges; store it
    } else if (index == graph.getVertexSet().size()) {
        return;          // base case: exhausted all vertices to explore
    } else {
        // recursive case: Explore whether or not to include the current vertex
        // (the one at index) in the current vertex cover.
        // choose not to include this vertex; explore
        findCoverHelper(graph, chosen, coveredEdges, allVertices, index + 1, best);
        chosen += allVertices[index];   // choose to include this vertex; explore
    }
}
```

// continued on next page
// remember which new edges are added here (so that we can un-choose later)
Set<Edge*> newEdges;
for (Edge* e : graph.getEdgeSet(allVertices[index])) {
 if (!coveredEdges.contains(e)) {
 // must add this edge and its inverse (A -> B and B -> A)
 Edge* inverse = graph.getEdge(e->finish, e->start);
 newEdges += e, inverse;
 coveredEdges += e, inverse;
 }
}
findCoverHelper(graph, chosen, coveredEdges, allVertices, index + 1, best);

chosen -= allVertices[index]; // unchoose
coveredEdges -= newEdges;
}

Set<Vertex*> findMinimumVertexCover(BasicGraph& graph) {
 Set<Vertex*> best = graph.getVertexSet(); // worst case solution
 Set<Vertex*> chosen;
 Set<Edge*> coveredEdges;
 Vector<Vertex*> allVertices;
 for (Vertex* v : graph.getVertexSet()) {
 allVertices.add(v);
 }
 findCoverHelper(graph, chosen, coveredEdges, allVertices, 0, best);
 return best;
}

9. tournamentWinners (graphs)

// version 1: two-level BFS
bool isWinner(BasicGraph& tourney, Vertex* player) {
 Set<Vertex*> oneHop = tourney.getNeighbors(player);
 Set<Vertex*> twoHop;
 for (Vertex* vanquished : oneHop) {
 twoHop += tourney.getNeighbors(vanquished);
 }
 return (oneHop + twoHop + player).size() == tourney.size();
}

Set<Vertex*> tournamentWinners(BasicGraph& tourney) {
 Set<Vertex*> winners;
 for (Vertex* player : tourney) {
 if (isWinnerBFS(tourney, player)) {
 winners.add(player);
 }
 }
 return winners;
}
bool isWinnerBruteForce(BasicGraph& tourney, Vertex* player) {
 for (Vertex* other : tourney) {
 if (other == player) { continue; }
 if (!tourney.containsEdge(player, other)) {
 // see if anyone that this player won against beat this other person
 bool success = false;
 for (Vertex* vanquished : tourney.getNeighbors(player)) {
 if (tourney.getNeighbors(vanquished).contains(other)) {
 success = true;
 break;
 }
 }
 if (!success) { return false; }
 }
 }
 return true;
}