
CS106X Handout 01

Winter 2019 January 7th, 2019

CS106X Course Information

Instructor: Jerry Cain
E-Mail: jerry@cs.stanford.edu
Office: Gates 192
Cell Phone: 415-205-2242
Office hours: Wednesdays 3:15 – 4:45 p.m., and by appointment

Website: http://cs106x.stanford.edu

Prerequisites: CS106X is the more advanced of the two courses teaching introductory

programming abstractions and algorithms. CS106X is designed as an
alternative to the more sensibly paced CS106B, because some students—self-
taught programmers, exceptionally strong CS106A students, and AP Java
graduates—prefer a more intense treatment in the company of other
aficionados.

AP Java and CS106A are all about basic programming practices—expressions,
control idioms, decomposition, algorithmic thinking, class design, object
orientation, and basic client use of arrays and maps. CS106X teaches
advanced abstraction techniques, worrying first about C++ language mechanics
and eventually focusing on topics such as recursion, inheritance, event-driven
programming, C++ lists, sets, and maps, and the implementation techniques
used to build custom data structures.

Lectures: MWF 10:30 – 11:20 a.m.
 Y2E2, Room 111

 My CS106X lectures are feel-good, conversational, and informal, while working

through material at an intense pace. We go through a good mix of examples—
some drawn verbatim from the reader, but most are my own. I often stop mid-
topic at 11:20 one lecture and pick up as if we never stopped talking next
lecture at 10:30.

Sections: In addition to the three lectures every week, you’ll also participate in a 50-

minute discussion sections (beginning the week of January 14th). Sections are
mostly whiteboard discussion, sometimes with a little bit of coding, and the
problems you’ll be discussing will be posted well in advance. Those with
laptops should bring them to section, but those without laptops shouldn’t
worry, as we’ll be pairing everyone up for any coding portion.

 2

There are several section times to choose from, and those times will be
published to https://cs198.stanford.edu/cs198/auth/section/
by Thursday, January 10th at 5:00 p.m. You’ll have between Thursday at 5:00
p.m. and Sunday, January 13th at 5:00 p.m. to survey your options and state
your preferences. In the past, we’ve been able to assign the vast majority of
students to their first choices, and virtually all to one of their top two. If after
you’ve been scheduled to a section you find that you can’t regularly attend,
you can contact me and I’ll work to fix it.

Readings: The class textbook is Programming Abstractions in C++ by Eric Roberts,

which should be available at the Stanford Bookstore. If you’d prefer, you can
download a PDF of the reader from the course website and read from that.

In addition to the reader, we construct a good number of handouts, chock full
of additional examples. All handouts are posted to the course web site as
PDFs, and it’s our expectation that you read the handouts online, printing
them out yourself if that suits you better. We will provide hardcopies of
some—discussion section handouts, assignments, and practice exams—when
it’s clear having a paper copy available is unambiguously better.

Software: Programming assignments can be written on either Macintosh or Windows PC

computers using a development environment called QtCreator. More
information about QtCreator will be provided online by this Wednesday’s
lecture, when your first assignment goes out.

Mailing List: All students enrolled in CS106X are automatically subscribed to the

cs106x-win1819-students@lists mailing list. The list server is in
touch with Axess, so if you’ve signed up for the course, you’re probably on
the mailing list already. Please make it a point to register for CS106X as soon
as possible, since we tend to broadcast a good number of announcements
during the first two weeks, and we don’t want you to miss them.

Assignments: There are six or seven programming assignments, and it’s possible we’ll throw

in a written problem set as well. The assignments are serious projects, and they
get more difficult as we cover more advanced material. The only way to learn
programming is to work at it, so expect to spend lots of time in front of a
computer. Your assignments are graded interactively in a one-on-one session
with your section leader. In general, your section leader will meet with you
and return an assignment within one week of the day you submit it.

Exams: There will be two examinations

 First Exam: Thursday, February 7th 7:00 p.m. – 8:30 p.m.
 Second Exam: Thursday, March 7th 7:00 p.m. – 8:30 p.m.

 3

 The first exam will cover the first four weeks of the course, and the second

exam will cover the first eight weeks of the course, focusing on the material
covered during Weeks 5 through 8.

Final Project: In place of a final exam, you’ll define, design, and implement a final project

from start to finish. The final project can be anything whatsoever, provided
the final application matches the size and complexity of any of your CS106X
assignments. Your final project must leverage at least one topic taught in
CS106X and, ideally, would leverage many of them. Your program can be
anything at all, and might be informed by your interest in literature, music,
art, history, languages, biology, politics, engineering, or anything else you
want to incorporate into a well-formed project.

 We’ll provide more detail about the final project during Week 3, once we’ve

all settled into the class and I’ve gotten the chance to meet all of you. My
expectation is that we’ll work through the majority of the course material and
the standard assignments during the first eight weeks of the course, and that’ll
allow for you to dedicate the rest of the quarter—up until March 21st at
8:30am—to fully implement your project.

Grading: Your final grade will be computed as follows:

 Assignments 50 %
 First Exam 15 %
 Second Exam 15 %
 Final Project 20 %

 The assignments and the final project are all graded on a bucket system, as

we want assignment evaluation to de-emphasize points and the letter grade
and instead focus on what could have been done differently and what
absolutely needed to be done differently.

In the interest of transparency, however, here is a clear description of the
various buckets and the numbers they correspond to.

+ Given to an exceptionally strong submission that not only meets the

requirements, but exceeds them in some significant, algorithmically
interesting way. In general, we see less than 5% of assignments getting
+’s. The + is ultimately recorded as a 100 in the spreadsheet, since it’s
clearly A+ work.

√+ Given to a solid submission that gets the job done and contains at most
a very small number of trivial errors. In general, 35-40% of assignment
submissions get the √+, which maps to a 95.

 4

√ Given to quality submissions that get most of the job done in spite of a
one or two major errors, or a significant number of minor ones. In
general, about 45-50% of assignment submissions get a √, which maps
to an 88 come spreadsheet time. This is the most controversial grade,
because Stanford students don’t like getting B+’s on assignments.
However, when we give them, it’s because the program wasn’t as good
as it could have been and there were more impressive submissions.

√- Given to a submission that does much of the work but contains so many
obvious problems that even a √ isn’t warranted. The √- maps to an 80
come spreadsheet time.

- Given to a submission that clearly fails to solve the assigned problem or
problems adequately. CS106X students generally don’t get these grades,
but if you get one it’s because something clearly didn’t go well. The -
maps to a 70 when we work all of my spreadsheet magic at the end of
the quarter.

For each assignment, we also issue a companion style grade evaluating your
overall design, decomposition, and code clarity. When issuing style grades,
we’re very open to different approaches, and penalties are imposed only when
there are clear arguments that you overcomplicated something or your general
coding style is subpar. Style grades are also bucketed, but we only issue √’s,
√+’s, and √-‘s. Functionality counts twice as much as style.

The class median on the first exam tends to be high—typically above 80
percent, while the median on the second exam tends to be between 70 and 80.
When an exam median is 80 or above, your raw exam score contributes as is to
your final average. When the exam median is below an 80, we curve the
highest grade to a 100, the median grade to an 80, and everything else is scaled
up accordingly.

 This is only the second time CS106X is requiring you design and build a final

project, but I anticipate the majority of you will receive √’s and √+’s. We’ll be
working with each of you during the brainstorming, design, and
implementation phases to ensure a successful and satisfying result.

Those with a 90.0+ average (around a third of you, typically) at the end get
some form of an A. Those with 80.0+ averages who don’t make it to 90.0 (all
but a handful of you) typically get some form of a B, and so forth.

Fair Access Students who may need an academic accommodation based on the impact of a
disability must initiate the request with the Student Disability Resource Center
(SDRC) located within the Office of Accessible Education (OAE). SDRC staff
will evaluate the request with required documentation, recommend reasonable
accommodations, and prepare an Accommodation Letter for faculty dated in

 5

the current quarter in which the request is being made. Students should
contact the SDRC as soon as possible since timely notice is needed to
coordinate accommodations. The OAE is located at 563 Salvatierra Walk
(phone: 650-723-1066).

Late policy: The pace of this course makes it difficult for students to catch up once they

have fallen behind, so we encourage you to submit all of your assignments on
time. Of course, we’re all busy people, so we understand when you can’t meet
each and every deadline we put before you.

Here’s how we handle lateness: You get two free late days, and you consume
one late day any time you hand in work between one second and one class
period after the original deadline. Once you consume your two free late days,
you can still hand in late work, but your late days are no longer free. For each
additional late day, we subtract 2% from your overall homework average. In
general, it’s wiser to take an extra late day unless you think you’re in √ territory
already, in which case it probably isn’t worth it.

Note that the final project must be completed by March 21st at 8:30am, without
exception. Restated, you can’t use any late days—even free ones—for the final
project.

Incompletes: We only grant incompletes to those who complete all work due prior to the

course withdrawal deadline, and only because of a severe illness or a family
emergency. Understand that an incomplete isn’t some happy reset button you
get to press to start over and repeat the course. It’s a courtesy extension an
end-of-quarter deadline to help mitigate some unfortunately timed drama. In
general, all work must be completed before spring quarter begins.

Honor Code: Although you are encouraged to discuss ideas with others, your programs are to

be completed independently and should be original work. Whenever you
obtain help (from other students, the section leaders, students in other classes)
you should acknowledge this in your program write-up, e.g. "The idea to use
insertion sort instead of selection sort to alphabetize the list of names was
actually my section leader’s idea." Even if you get help from others, the work
you submit should uncontroversially be viewed as original work.

 To be even more specific, you are not allowed to collaborate while actively

coding, nor are you allowed to copy parts of programs from other students.
The following four activities are among the many considered to be Honor Code
violations in this course:

1. Looking at another student’s code.

 6

2. Showing another student your code or making your code public so
that it’s searchable and easily discovered online or elsewhere.

3. Discussing assignments in such detail that you duplicate a portion of
someone else's code in your own program.

4. Uploading your code to a public repository (e.g. github.com) so
that others can easily discover it via word of mouth or search
engines. If you’d like to upload your code to a private repository, you
can do so on github or some other hosting service that provides
free-of-charge hosting.

 Unfortunately, the CS department sees more than its fair share of Honor Code
violations. Because it’s important that all cases of academic dishonesty are
identified for the sake of those playing by the rules, we use software tools to
compare your submissions against those of all other current and past CS106
students. While we certainly don’t want to create some Big Brother
environment, we do need to be clear how far we’ll go to make sure the
consistently honest feel their honesty is valued.

If the thought of copying code has never crossed your mind, then you needn’t
worry, because I’ve never seen a false accusation go beyond a single
conversation. But if you’re ever tempted to share code—whether it’s because
you don’t understand the material, or because you do but just you don’t have
enough time to get the work done—then you need to remember these
paragraphs are here.

