
Memory Hierarchy

Goals

High capacity

Fast access

Cheap to build

Can't have all three

Registers: very low capacity, but fast

Main memory (RAM): pretty large capacity, but slow



Memory Hierarchy

Goals

High capacity

Fast access

Cheap to build

Can't have all three

Registers: very low capacity, but fast

Main memory (RAM): pretty large capacity, but slow

Another problem: rate of growth

CPU performance increasing 2x every 1.5 years

Memory performance increasing 5% per year



Solution: Caches

Compromise between capacity and speed

Store frequently/recently used data

Much smaller capacity than RAM (KBs or MBs)

More expensive to build, more physical space

Managed entirely by hardware

Abstraction is that we have a large, fast memory



Analogy

Your desk

Limited space, easy access

Green Library

Lots of material, slow to access



Analogy

Your desk

Limited space, easy access

Your bookshelf

More space than your desk, faster than library

Green Library

Lots of material, slow to access



Analogy

Your desk

Limited space, easy access

Your bookshelf

More space than your desk, faster than library

Green Library

Lots of material, slow to access

"Auxiliary Library" in Livermore

Huge capacity, takes a day to page in materials



Why Caches?

Key assumption: locality

Memory accesses are not totally random

Temporal locality

Likely to access same piece of memory again

E.g. local variables

Spatial locality

Likely to access neighboring memory

E.g. contiguous elements of array



Caching Terms

Hit: data found in cache

Miss: data not found in cache

Go to next level (another cache, RAM) to get it



Caching Terms

Hit: data found in cache

Miss: data not found in cache

Go to next level (another cache, RAM) to get it

Miss rate: fraction of accesses which miss

Hit time: if hit, time to access data

Miss penalty: time we have to wait if we miss



myth Memory Hierarchy

Registers: 16 * 8 bytes

Can read/write two registers in 1 cycle

L1 cache: 32 KiB, 1-2 cycle hit time

Very fast, pretty small

Optimized for hits

L2 cache: 4-6 MiB, 5-20 cycle hit time

Much larger than L1, but 10x slower

Optimize to avoid misses

RAM: 4 GiB, 50-200 cycle access time



Effect of Miss Rate

Scenario: 1% miss rate

1 cycle hit time, 100 cycle miss penalty

Average memory access time (AMAT)
1 cyc * 99 hits + 100 cyc * 1 miss = 1.99 cyc/access

What if miss rate increased to 3%?



Effect of Miss Rate

Scenario: 1% miss rate

1 cycle hit time, 100 cycle miss penalty

Average memory access time (AMAT)
1 cyc * 99 hits + 100 cyc * 1 miss = 1.99 cyc/access

What if miss rate increased to 3%?
AMAT = 1 * 97 + 100 * 3 = 3.97 cyc/access

2x slower on average!



Cache Mechanics

Cache divided into blocks

If miss, read whole block into cache

Bigger block => bring in more neighbors

How to find block holding a given address?

Check every block: very expensive in hardware

Every address maps to one block: addresses could 
conflict



Cache Mechanics Example

64 byte cache block, 128 entries

Each address maps to a single block

Address = ...xxx yyyyyyy zzzzzz

...xxx: tag (determine if block holds this address)

yyyyyyy: which block in cache to look in

zzzzzz: offset into block



Examples



Writing Cache-Friendly Code

Can't just avoid linked lists

But consider whether another data structure might 
be better

If using linked list

Put most recently used cells at front of list

Consider the cost of accessing next cell

Group accesses to the same cell

Measure, don't guess!

Are cache misses the bottleneck?

Are there misses where you don't expect?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

