
Goals for Today

Finish discussion of floats

Denorms, epsilon, arithmetic error

Introduce assembly language

What is it? Why do we study it?

The essentials of x86-64

Registers, memory, the mov instruction



Recap: Floating Point

Split number into exponent and significand

Exponent like the units of the number

Value of float: ±1.xxx2·2yyy

minifloat: 8 bits

1 sign, 4 exponent, 3 significand



Denormalized Numbers

Exponent bits all 0

No implicit 1, exponent = 1 - bias

±0.SSS2·21-bias

Zero is all bits 0

-0: separate bit pattern, hardware handles

Equally spaced

0

1/64



minifloat



Arithmetic

Addition

If different exponent, change smaller value to match

May lose precision (e.g. add 1 to a billion)

Multiplication

Multiply significand, add exponent



Big Picture Takeaways

Almost all decimal numbers can’t be 
represented exactly

Relative vs. absolute error

If checking whether numbers are “close enough,” no 
single number will do

Error can e precisely quantified



So Far

Finish discussion of floats

Denorms, epsilon, arithmetic error

Introduce assembly language

What is it? Why do we study it?

The essentials of x86-64

Registers, memory, the mov instruction



Assembly Language

What happens to C code when we compile?

C is not directly executed on hardware

Ultimately translated to sequence of bytes the 
hardware interprets (machine language)

Assembly language

One step before machine language

Can see individual instructions



Why Study Assembly?

Essential for compiler writers

But most of us aren't

Probably won't need to hand-generate asm

...Sometimes (custom hardware, embedded systems)

Reading assembly

Understand compiler optimizations

Adapt your C code to hardware

Focus: C <-> assembly translation



ISA: Instruction Set Architecture

Contract between hardware and software

What the hardware can do

Memory access

Arithmetic (simple ops)

Control flow (branch/jump)

How programs/functions interact

Function calls (parameter passing, return value)

Memory layout



Brief History of X86-64

Oiriginal 8086 in 1978

Started out 16-bit, then 32, now 64

Increasing complexity over time

Can't change/remove instructions from ISA

Can only add

Only need to learn a very small subset



x86-64 Overview

16 Registers

8-byte (64-bit) "boxes"

Calculations done on registers

Lots of moving to/from memory

Example: x = y + 5

Move y from memory to register %rax

Add 5 to %rax

Move %rax to x in memory



x86-64 Integer Registers

64 bit

%rax

%rax

%rcx

%rbx

%rdx

%rdi

%rsi

%rax

%rsp

%rbp

%r8

... %r9 through %r15 (just like %r8)



x86-64 Integer Registers

64 bit 32 bit

%rax %eax

%rax %eax

%rcx %ecx

%rbx %ebx

%rdx %edx

%rdi %edi

%rsi %esi

%rax %eax

%rsp %esp

%rbp %ebp

%r8 %r8d

... %r9 through %r15 (just like %r8)



x86-64 Integer Registers

64 bit 32 bit 16 bit 8 bit

%rax %eax %ax %al

%rax %eax %ax %al

%rcx %ecx %cx %cl

%rbx %ebx %bx %bl

%rdx %edx %dx %dl

%rdi %edi %di %dil

%rsi %esi %si %sil

%rax %eax %ax %al

%rsp %esp %sp %spl

%rbp %ebp %bp %bpl

%r8 %r8d %r8w %r8b

... %r9 through %r15 (just like %r8)



mov Instruction

mov src, dst

Copy value from src to dst

src can be constant, register, memory

dst can be register, memory

(Both cannot be memory)

Many addresing modes



GCC Explorer: mov

(See link on syllabus page)



Summary

Finish discussion of floats

Denorms, epsilon, arithmetic error

Introduce assembly language

What is it? Why do we study it?

The essentials of x86-64

Registers, memory, the mov instruction


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

