
Computer Systems

Cynthia Lee

C S 1 0 7

Today’s Topics

LECTURE:

› Pop quiz on floating point!

• Just kidding.

› New: Assembly code

Two friendly reminders:

2

REMINDER:
Everything is bits!

Everything is bits!

 We’ve seen many data types so far:

› Integers:

• char/short/int/long (encoding as unsigned or two’s complement signed)

› Letters/punctutation/etc:

• char (ASCII encoding)

› Real numbers:

• float/double (IEEE floating point encoding)

› Memory addresses:

• pointer types (unsigned long encoding)

› Now a new one…..the code itself!

• Instructions (AMD64 encoding)

What happens when we
compile our code?
ANATOMY OF AN EXECUTABLE FILE

What happens when we compile our code?

int sum_array(int arr[], int nelems) {

int sum = 0;

for (int i = 0; i < nelems; i++) {

sum += arr[i];

}

return sum;

}

> make

> ls

Makefile sum sum.c

> objdump –d sum

7

000000000040055d <sum_array>:

40055d: ba 00 00 00 00 mov $0x0,%edx

400562: b8 00 00 00 00 mov $0x0,%eax

400567: eb 09 jmp 400572

400569: 48 63 ca movslq %edx,%rcx

40056c: 03 04 8f add (%rdi,%rcx,4),%eax

40056f: 83 c2 01 add $0x1,%edx

400572: 39 f2 cmp %esi,%edx

400574: 7c f3 jl 400569

400576: f3 c3 repz retq

000000000040055d <sum_array>:

40055d: ba 00 00 00 00 mov $0x0,%edx

400562: b8 00 00 00 00 mov $0x0,%eax

400567: eb 09 jmp 400572

400569: 48 63 ca movslq %edx,%rcx

40056c: 03 04 8f add (%rdi,%rcx,4),%eax

40056f: 83 c2 01 add $0x1,%edx

400572: 39 f2 cmp %esi,%edx

400574: 7c f3 jl 400569

400576: f3 c3 repz retq

8

Name of the function (same as in

the C code) and the memory

address where the code for this

function starts

000000000040055d <sum_array>:

40055d: ba 00 00 00 00 mov $0x0,%edx

400562: b8 00 00 00 00 mov $0x0,%eax

400567: eb 09 jmp 400572

400569: 48 63 ca movslq %edx,%rcx

40056c: 03 04 8f add (%rdi,%rcx,4),%eax

40056f: 83 c2 01 add $0x1,%edx

400572: 39 f2 cmp %esi,%edx

400574: 7c f3 jl 400569

400576: f3 c3 repz retq

9

Memory address

where each of line of

instruction is found—

sequential instructions

are found sequentially

in memory

000000000040055d <sum_array>:

40055d: ba 00 00 00 00 mov $0x0,%edx

400562: b8 00 00 00 00 mov $0x0,%eax

400567: eb 09 jmp 400572

400569: 48 63 ca movslq %edx,%rcx

40056c: 03 04 8f add (%rdi,%rcx,4),%eax

40056f: 83 c2 01 add $0x1,%edx

400572: 39 f2 cmp %esi,%edx

400574: 7c f3 jl 400569

400576: f3 c3 repz retq

10

Assembly code:

“human-readable”

version of each

instruction

000000000040055d <sum_array>:

40055d: ba 00 00 00 00 mov $0x0,%edx

400562: b8 00 00 00 00 mov $0x0,%eax

400567: eb 09 jmp 400572

400569: 48 63 ca movslq %edx,%rcx

40056c: 03 04 8f add (%rdi,%rcx,4),%eax

40056f: 83 c2 01 add $0x1,%edx

400572: 39 f2 cmp %esi,%edx

400574: 7c f3 jl 400569

400576: f3 c3 repz retq

11

Machine code:

raw hexadecimal

version of each

instruction,

representing the

binary as it would

be read by the

computer

Anatomy of an individual
instruction

Anatomy of an individual instruction

40056c: 03 04 8f add (%rdi,%rcx,4),%eax

40056f: 83 c2 01 add $0x1,%edx

400572: 39 f2 cmp %esi,%edx

400574: 7c f3 jl 400569

13

Operation name

(sometimes called

“opcode”)

Operands

(like arguments)

Anatomy of an individual instruction

40056c: 03 04 8f add (%rdi,%rcx,4),%eax

40056f: 83 c2 01 add $0x1,%edx

400572: 39 f2 cmp %esi,%edx

400574: 7c f3 jl 400569

14

%[name] names a register—

these are a small collection of

memory slots right on the CPU

that can hold variables’ values

Anatomy of an individual instruction

40056c: 03 04 8f add (%rdi,%rcx,4),%eax

40056f: 83 c2 01 add $0x1,%edx

400572: 39 f2 cmp %esi,%edx

400574: 7c f3 jl 400569

15

$[number] means a constant

value (this is the number 1)

000000000040055d <sum_array>:

40055d: ba 00 00 00 00 mov $0x0,%edx

400562: b8 00 00 00 00 mov $0x0,%eax

400567: eb 09 jmp 400572

400569: 48 63 ca movslq %edx,%rcx

40056c: 03 04 8f add (%rdi,%rcx,4),%eax

40056f: 83 c2 01 add $0x1,%edx

400572: 39 f2 cmp %esi,%edx

400574: 7c f3 jl 400569

400576: f3 c3 repz retq

16

Guessing game: which part of the sum_array C code do you think

corresponds to the marked assembly instruction?

int sum_array(int arr[], int nelems) {

int sum = 0; // (A)

for (int i = 0; i < nelems; i++) { // (B)

sum += arr[i]; // (C)

} // or (D) other?

return sum;

}

Registers and memory
ANATOMY OF THE COMPUTER

An architecture view of computer hardware

18

The mov instruction
OUR FIRST INSTRUCTION

Dude, where’s my data?

 A main job of assembly language is to manage data:

› Data can be on the CPU (in registers) or in memory (at an address)

• Turns out this distinction REALLY MATTERS for performance

• https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html

› Instructions often want to move data:

• Move from one place in memory to another

• Move from one register to another

• Move from memory to register

• Move from register to memory

› Instructions often want to operate on data:

• Add contents of register X to contents of register Y

 Hence “mov” (move) instruction is paramount!

https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html

mov

 mov src,dst

› Optional suffix (b,w,l,q): movb, movw, movl, movq

› One confusing thing about “move” it makes it sound like it leaves the

src “empty”—no!

• Does a copy, like the assignment operator you are familiar with

› src,dst options:

• Immediate (AKA constant value)

• Register

• Memory

Basic addressing modes

22

(Think: assembly version
of VARIABLES)

 Notice that one major difference between high-level code and assembly

instructions is the absence of programmer-chosen, descriptive variable

names:

 We don’t get to choose variable names, we have to talk directly about

places in hardware

 “Addressing modes” are allowable ways of naming these places

int total_goodness = nReeses + nButterfinger;

addl 8(%rbp),%eax

Basic addressing modes

Op Source Dest Dest Comments

movl $0, %eax Name of a register

movl $0, 0x8f2713e0 Actual address literal (note address

literals are different from other

literals—don’t need $ in front)

movl $0, (%rax) Look in the register named, find an

address there, and use it

23

(Think: assembly version
of VARIABLES)

Reminder: need to put $

in front of immediate

values (constant literals)

Basic addressing modes

Op Source Dest Dest Comments

movl $0, %eax Name of a register

movl $0, 0x8f2713e0 Actual address literal (note address

literals are different from other

literals—don’t need $ in front)

movl $0, (%rax) Look in the register named, find an

address there, and use it

movl $0, -24(%rbp) Add -24 to an address in the

named register, and use that

address

24

(Think: assembly version
of VARIABLES)

Displacement can be

positive or negative

Displacement must be a

constant; to have a variable

base and variable

displacement , use two

steps: add then mov

Basic addressing modes

Op Source Dest Dest Comments

movl $0, %eax Name of a register

movl $0, 0x8f2713e0 Actual address literal (note address

literals are different from other

literals—don’t need $ in front)

movl $0, (%rax) Look in the register named, find an

address there, and use it

movl $0, -24(%rbp) Add -24 to an address in the

named register, and use that

address

movl $0 8(%rbp, %eax, 2) Address to use = (8 + address in

rbp) + (2 * index in eax)

25

(Think: assembly version
of VARIABLES)

Only 1, 2, 4, 8 allowedAny constant allowed

Matching exercise: Addressing modes use cases

Op Src Dest Use case?

movl $0 8(%rbp, %eax, 2)

movl $0, %eax

movl $0, 0x8f2713e0

movl $0, 4(%rax)

26

Use cases

(a) Prepare to use 0
in a calculation

(b) Zero out a field
of a struct

(c) Zero out a given
array bucket

(d) Zero out a global
variable

 Match up which use cases make the most sense for which addressing

modes (some guesswork expected)

Instruction Set Architectures
SOME CONTEXT AND TERMINOLOGY

Instruction Set Architecture

 The ISA defines:

› Operations that the processor can execute

› Data transfer operations + how to access data

› Control mechanisms like branch, jump (think loops and if-else)

› Contract between programmer/compiler and hardware

 Layer of abstraction:

› Above:

• Programmer/compiler can write code for the ISA

• New programming languages can be built on top of the ISA as
long as the compiler will do the translation

› Below:

• New hardware can implement the ISA

• Can have even potentially radical changes in hardware
implementation

• Have to “do” the same thing from programmer point of view

 ISAs have incredible inertia!

› Legacy support is a huge issue for x86-64

Two major categories of Instruction Set Architectures

 CISC:

› Complex instruction set computers

• e.g., x86 (CS107 studies this)

› Have special instructions for each thing you might

want to do

› Can write code with fewer instructions, because each

instruction is very expressive

 RISC:

› Reduced instruction set computers

• e.g., MIPS

› Have only a very tiny number of instructions, optimize

the heck out of them in the hardware

› Code may need to be longer because you have to go

roundabout ways of achieving what you wanted

