Computer Systems
CS107

Cynthia Lee

Stanford University



Today’s Topics m

LECTURE:
» Pop quiz on floating point! L
 Just kidding. 4
» New: Assembly code % - Y.,

[Bﬂ'[ldi' PTO BECOMING SORTA'GOOD

CYAAT SOMETHING -

Imposter Syndrome Reality

2

Two friendly reminders:

—

What | know

What | think others know What | know

ﬁ What others know Stanford University




MAKE GIFS AT GIFSOUP.COM

REMINDER:
Everything is bits!

Stanford University



Everything is bits!

= We've seen many data types so far:
Integers:
» char/short/int/long (encoding as unsigned or two’s complement signed)
Letters/punctutation/etc:
» char (ASCII encoding)
Real numbers:
« float/double (IEEE floating point encoding)
Memory addresses:
 pointer types (unsigned long encoding)
Now a new one.....the code itself!
* Instructions (AMD64 encoding)

N

N

v

v

v

MAKE GIFS AT GIFSOUP.COM

Stanford University



What happens when we
compile our code?

ANATOMY OF AN EXECUTABLE FILE

Stanford University



What happens when we compile our code?

int sum_array(int arr[], int nelems) {
int sum = ©;
for (int i = 0; 1 < nelems; i++) {
sum += arr[i];
}

return sum;

¥

> make

> 1s
Makefile
> objdump

Stanford University



000000000040055d <sum_a

40055d:
400562 :
400567 :
400569
40056¢C:
400567 :
400572 :
400574 :
400576

00 00 00 00
00 00 00 00
09
63

c2
f2
f3
c3

mov $0x0, %edx

mov $0x0, %eax

jmp 400572

movslq %edx,%rcx

add (%rdi,%rcx,4),%eax
add $0x1, %edx

cmp %»esi,sedx
jl 400569
repz retq

Stanford University



000000000040055d <sum_array>:
\. 7
Y
Name of the function (same as in
the C code) and the memory
address where the code for this
function starts




000000000040055d <sum_array>:

40055d:
400562 :
400567 :
400569
40056¢C:
400567 :
400572 :
400574 :
400576

'\

.

Memory address
where each of line of
Instruction is found—
sequential instructions
are found sequentially
INn memory



000000000040055d <sum_array>:

— mov $0x0, %edx

mov $0x0, %eax

jmp 400572

movslq %edx,%rcx

add (%rdi,%rcx,4),%eax

Assembly code: < add  $0x1,%edx
“human-readable’ cmp  %esi,%edx
version of each jl 400569
Instruction _ repz retq

10 Stanford University



000000000040055d <sum_array>:
ba 00 00 00 00
b8 00 00 00 00

'\

67 (eb 09 /
4863 Ca

03 04 8f
83 c2 o1
39 f2
7¢c 3
3 ¢3

11

Machine code:

>~ raw hexadecimal
version of each
Instruction,
representing the
binary as it would
be read by the
computer




Anatomy of an individual
Instruction

Stanford University



13

Anatomy of an individual instruction

40056¢C:
400567 :
400572
400574

(%rdi,%rcx,4),%eax

03 04 8f add
83 c2 o1 d
39 f2 cmp
7c¢ f3 jl

/

Operation name
(sometimes called
“opcode”)

$0x1, %edx
%esi,%edx

400569

\ J
Y

Operands
(like arguments)

Stanford University



14

Anatomy of an individual instruction

40056 : 03 04 8f add
400567 : \§3<E? 01 | |Jadd
400572 : \J_i;f} cmp
400574 7c f3 1

(%rdi,%rcx,4),%eax
$0x1, %edx
%esi,sedx

400569 \

%[name] names a register—

these are a small collection of
memory slots right on the CPU
that can hold variables’ values

Stanford University



15

Anatomy of an individual instruction

40056cC : 03 04 8f add (%rdi,%rcx,4),%eax
400567 : 83 c2 91 add $0x1, %edx

400572 39 f2 cmp %esi,kedx

400574 . 7¢c 3 jl 400569

$[number] means a constant
value (this is the number 1)

Stanford University



000000000040055d <sum_array>:

40055d: ba 00 00 00 00 mov $0x0, %edx
400562 : b8 00 00 00 00 mov $0x0, %eax
400567 : eb 09 jmp 400572

400569 48 63 ca movslqg %edx,%rcx

40056¢C: 03 04 8f add (%rdi,%rcx,4) )%eax
40056f : 83 c2 o1 % $0x:l..,Aedx ~dd;
400572 39 f2 cmp %esi,%edx ytj
400574 : 7c¢ 3 jl 400569

400576 3 ¢3 repz retq ~4ﬁ4.

mwhich part of the sum_array C code do you think
corresponds to the marked assembly instruction?
int sum_array(int larr[], int nelems) {

// (A)

< nele s;<§££> { // (B)
/

// or (D) other?

int sum = 0;

for (int i

}

return sum;
Stanford University

16 }



Registers and memory

ANATOMY OF THE COMPUTER

Stanford University



An architecture view of computer hardware

v

e e
jrégister file

e

Expansion slots for

—_ ‘other devices such

work adapters

PC
g |¢m bus Memory bus
| . ! o__|. l
Bus interface 5 : bridge [
1 +
| | ‘I/O”bus'“ ”
USB Graphics Disk —
controller adapter controller

Mouse Keyboard Display

18

hello gxecutable
storéd on disk ]

Stanford University



The mov instruction

OUR FIRST INSTRUCTION

Stanford University



Dude, where’s my data?

= A main job of assembly language is to manage data:
» Data can be on the CPU (in registers) or in memory (at an address)

« Turns out this distinction REALLY MATTERS for performance
e https://people.eecs.berkeley.edu/~rcs/research/interactive latency.html

» Instructions often want to move data:
* Move from one place in memory to another
* Move from one register to another
* Move from memory to register
* Move from register to memory
» Instructions often want to operate on data:
» Add contents of register X to contents of register Y

= Hence “mov” (move) instruction is paramount!

Stanford University


https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html

mov

= mov src,dst
» Optional suffix (b,w,l,q): movb, movw, movl, movq
» One confusing thing about “move” it makes it sound like it leaves the
src “empty”—no!

* Does a copy, like the assignment operator you are familiar with

> src,dst options:
* Immediate (AKA constant value)
» Register
« Memory

Stanford University



- - Ink: assembly version
Basic a@ssmg modes VARIABLES)

= Notice that one major difference between high-level code and assembly
instructions is the absence of programmer-chosen, descriptive variable
names:

int total_goodness = nReeses + nButterfinger;

addl! 8(/’J)) )/eax

= We don't get to choose variable names, we have to talk directly about
places in hardware

= “Addressing modes” are allowable ways of naming these places

Stanford University



(Think: assembly version

Basic addressing modes of VARIABLES)

Op | Source |Dest | Dest Comments

movl $0, %eax Name of a register

movl /%0, x8f2713e0 Actual address literal (note address

literals are different from other
literals—don’t need $ in front)

movl/ %0, (%rax) Look in the register named, find an
address there, and use it

Reminder: need to put $

in front of immediate
values (constant literals)

Stanford University



: . (Think: assembly version
Basic addressing modes of VARIABLES)

Op | Source [Dest | Dest Comments

movl $0, %eax Name of a register
movl $0, Ox812713e0 Actual address literal (note address

literals are different from other
literals—don’t need $ in front)

movl $0, (%rax) Look in the register named, find an
address there, and use it

Add -24 to an address in the
named register, and use that
address

mov 1l

Displacement must be a

constant; to have a variable Displacement can be
base and variable positive or negative

displacement , use two
steps: add then mov Stanford University



Basic addressing modes

(Think: assembly version
of VARIABLES)

Op | Source |Dest | Dest Comments

movl $0,
movl $0,
movl $0,
movl $0,

movl

%eax

Ox8f2713e0

(%rax)

—_2’_'4(/or‘bp)

Any constant allowed

Only 1, 2, 4, 8 allowed

Name of a register

Actual address literal (note address
literals are different from other
literals—don’t need $ in front)

Look in the register named, find an
address there, and use it

Add -24 to an address in the
named register, and use that
address

Address to use = (8 + address in
rbp) + (2 * index in eax)

Stanford University



Matching exercise: Addressing modes use cases

= Match up which use cases make the most sense for which addressing
modes (some guesswork expected)

shwd ary S\
Op | src_ m

movl $0 8(%rbp, %eax < (a) Prepare to use 0
Q, in a calculation
movl $0, %eax ( (b) Zero out a field
AN of a struct
movl $0;, ©x8f2713e0 \> (c) Zero out a given
C A array bucket
movl $0, 4(%rax) (IO (d) Zero out a global
— .
variable

Stanford University



Instruction Set Architectures

SOME CONTEXT AND TERMINOLOGY

Stanford University



Instruction Set Architecture

» The ISA defines:
» Operations that the processor can execute
» Data transfer operations + how to access data
» Control mechanisms like branch, jump (think loops and if-else)
» Contract between programmer/compiler and hardware
= Layer of abstraction:
» Above:
» Programmer/compiler can write code for the ISA

« New programming languages can be built on top of the ISA as
long as the compiler will do the translation

> Below:
* New hardware can implement the ISA

« Can have even potentially radical changes in hardware
Implementation

* Have to “do” the same thing from programmer point of view
= |SAs have incredible inertia!

» Legacy support is a huge issue for x86-64
Stanford University



Two major categories of Instruction Set Architectur(es//g\
NI

= CISC: \ ° Nof

>nstruction set computers N2 Y
: : AARYNAS
e-g., x86 (CS107 studies this)
» Have special instructions for each thing you might

want to do

» Can write code with fewer instructions, because each
instruction is very expressive

= RISC:
)@struction set computers %

g WPS IN-N-OUT

» Have only a very tiny number of instructions, optimize O\ ?URGER
the heck out of them in the hardware )ﬁv"%

-

> Code may need to be longer because you have to goQ/Qc ‘ \¢ >KM
roundabout ways of achieving what you wanted 9 \C

N

McDonaid’s

\""  Stanford University



