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Today’s Topics m

LECTURE:
» Pop quiz on floating point! L
 Just kidding. 4
» New: Assembly code % - Y.,
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CYAAT SOMETHING -

Imposter Syndrome Reality
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Two friendly reminders:

—

What | know

What | think others know What | know
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MAKE GIFS AT GIFSOUP.COM

REMINDER:
Everything is bits!
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Everything is bits!

= We've seen many data types so far:
Integers:
» char/short/int/long (encoding as unsigned or two’s complement signed)
Letters/punctutation/etc:
» char (ASCII encoding)
Real numbers:
« float/double (IEEE floating point encoding)
Memory addresses:
 pointer types (unsigned long encoding)
Now a new one.....the code itself!
* Instructions (AMD64 encoding)

N

N

v

v
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MAKE GIFS AT GIFSOUP.COM
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What happens when we
compile our code?

ANATOMY OF AN EXECUTABLE FILE
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What happens when we compile our code?

int sum_array(int arr[], int nelems) {
int sum = ©;
for (int i = 0; 1 < nelems; i++) {
sum += arr[i];
}

return sum;

¥

> make

> 1s
Makefile
> objdump
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000000000040055d <sum_a

40055d:
400562 :
400567 :
400569
40056¢C:
400567 :
400572 :
400574 :
400576

00 00 00 00
00 00 00 00
09
63

c2
f2
f3
c3

mov $0x0, %edx

mov $0x0, %eax

jmp 400572

movslq %edx,%rcx

add (%rdi,%rcx,4),%eax
add $0x1, %edx

cmp %»esi,sedx
jl 400569
repz retq
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000000000040055d <sum_array>:
\. 7
Y
Name of the function (same as in
the C code) and the memory
address where the code for this
function starts




000000000040055d <sum_array>:

40055d:
400562 :
400567 :
400569
40056¢C:
400567 :
400572 :
400574 :
400576

'\

.

Memory address
where each of line of
Instruction is found—
sequential instructions
are found sequentially
INn memory



000000000040055d <sum_array>:

— mov $0x0, %edx

mov $0x0, %eax

jmp 400572

movslq %edx,%rcx

add (%rdi,%rcx,4),%eax

Assembly code: < add  $0x1,%edx
“human-readable’ cmp  %esi,%edx
version of each jl 400569
Instruction _ repz retq
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000000000040055d <sum_array>:
ba 00 00 00 00
b8 00 00 00 00

'\

67 (eb 09 /
4863 Ca

03 04 8f
83 c2 o1
39 f2
7¢c 3
3 ¢3
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Machine code:

>~ raw hexadecimal
version of each
Instruction,
representing the
binary as it would
be read by the
computer




Anatomy of an individual
Instruction
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Anatomy of an individual instruction

40056¢C:
400567 :
400572
400574

(%rdi,%rcx,4),%eax

03 04 8f add
83 c2 o1 d
39 f2 cmp
7c¢ f3 jl

/

Operation name
(sometimes called
“opcode”)

$0x1, %edx
%esi,%edx

400569

\ J
Y

Operands
(like arguments)
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Anatomy of an individual instruction

40056 : 03 04 8f add
400567 : \§3<E? 01 | |Jadd
400572 : \J_i;f} cmp
400574 7c f3 1

(%rdi,%rcx,4),%eax
$0x1, %edx
%esi,sedx

400569 \

%[name] names a register—

these are a small collection of
memory slots right on the CPU
that can hold variables’ values

Stanford University



15

Anatomy of an individual instruction

40056cC : 03 04 8f add (%rdi,%rcx,4),%eax
400567 : 83 c2 91 add $0x1, %edx

400572 39 f2 cmp %esi,kedx

400574 . 7¢c 3 jl 400569

$[number] means a constant
value (this is the number 1)
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000000000040055d <sum_array>:

40055d: ba 00 00 00 00 mov $0x0, %edx
400562 : b8 00 00 00 00 mov $0x0, %eax
400567 : eb 09 jmp 400572

400569 48 63 ca movslqg %edx,%rcx

40056¢C: 03 04 8f add (%rdi,%rcx,4) )%eax
40056f : 83 c2 o1 % $0x:l..,Aedx ~dd;
400572 39 f2 cmp %esi,%edx ytj
400574 : 7c¢ 3 jl 400569

400576 3 ¢3 repz retq ~4ﬁ4.

mwhich part of the sum_array C code do you think
corresponds to the marked assembly instruction?
int sum_array(int larr[], int nelems) {

// (A)

< nele s;<§££> { // (B)
/

// or (D) other?

int sum = 0;

for (int i

}

return sum;
Stanford University
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Registers and memory

ANATOMY OF THE COMPUTER
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An architecture view of computer hardware

v
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18

hello gxecutable
storéd on disk ]
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The mov instruction

OUR FIRST INSTRUCTION
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Dude, where’s my data?

= A main job of assembly language is to manage data:
» Data can be on the CPU (in registers) or in memory (at an address)

« Turns out this distinction REALLY MATTERS for performance
e https://people.eecs.berkeley.edu/~rcs/research/interactive latency.html

» Instructions often want to move data:
* Move from one place in memory to another
* Move from one register to another
* Move from memory to register
* Move from register to memory
» Instructions often want to operate on data:
» Add contents of register X to contents of register Y

= Hence “mov” (move) instruction is paramount!
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mov

= mov src,dst
» Optional suffix (b,w,l,q): movb, movw, movl, movq
» One confusing thing about “move” it makes it sound like it leaves the
src “empty”—no!

* Does a copy, like the assignment operator you are familiar with

> src,dst options:
* Immediate (AKA constant value)
» Register
« Memory
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- - Ink: assembly version
Basic a@ssmg modes VARIABLES)

= Notice that one major difference between high-level code and assembly
instructions is the absence of programmer-chosen, descriptive variable
names:

int total_goodness = nReeses + nButterfinger;

addl! 8(/’J)) )/eax

= We don't get to choose variable names, we have to talk directly about
places in hardware

= “Addressing modes” are allowable ways of naming these places
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(Think: assembly version

Basic addressing modes of VARIABLES)

Op | Source |Dest | Dest Comments

movl $0, %eax Name of a register

movl /%0, x8f2713e0 Actual address literal (note address

literals are different from other
literals—don’t need $ in front)

movl/ %0, (%rax) Look in the register named, find an
address there, and use it

Reminder: need to put $

in front of immediate
values (constant literals)
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: . (Think: assembly version
Basic addressing modes of VARIABLES)

Op | Source [Dest | Dest Comments

movl $0, %eax Name of a register
movl $0, Ox812713e0 Actual address literal (note address

literals are different from other
literals—don’t need $ in front)

movl $0, (%rax) Look in the register named, find an
address there, and use it

Add -24 to an address in the
named register, and use that
address

mov 1l

Displacement must be a

constant; to have a variable Displacement can be
base and variable positive or negative

displacement , use two
steps: add then mov Stanford University



Basic addressing modes

(Think: assembly version
of VARIABLES)

Op | Source |Dest | Dest Comments

movl $0,
movl $0,
movl $0,
movl $0,

movl

%eax

Ox8f2713e0

(%rax)

—_2’_'4(/or‘bp)

Any constant allowed

Only 1, 2, 4, 8 allowed

Name of a register

Actual address literal (note address
literals are different from other
literals—don’t need $ in front)

Look in the register named, find an
address there, and use it

Add -24 to an address in the
named register, and use that
address

Address to use = (8 + address in
rbp) + (2 * index in eax)
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Matching exercise: Addressing modes use cases

= Match up which use cases make the most sense for which addressing
modes (some guesswork expected)

shwd ary S\
Op | src_ m

movl $0 8(%rbp, %eax < (a) Prepare to use 0
Q, in a calculation
movl $0, %eax ( (b) Zero out a field
AN of a struct
movl $0;, ©x8f2713e0 \> (c) Zero out a given
C A array bucket
movl $0, 4(%rax) (IO (d) Zero out a global
— .
variable
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Instruction Set Architectures

SOME CONTEXT AND TERMINOLOGY
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Instruction Set Architecture

» The ISA defines:
» Operations that the processor can execute
» Data transfer operations + how to access data
» Control mechanisms like branch, jump (think loops and if-else)
» Contract between programmer/compiler and hardware
= Layer of abstraction:
» Above:
» Programmer/compiler can write code for the ISA

« New programming languages can be built on top of the ISA as
long as the compiler will do the translation

> Below:
* New hardware can implement the ISA

« Can have even potentially radical changes in hardware
Implementation

* Have to “do” the same thing from programmer point of view
= |SAs have incredible inertia!

» Legacy support is a huge issue for x86-64
Stanford University



Two major categories of Instruction Set Architectur(es//g\
NI

= CISC: \ ° Nof

>nstruction set computers N2 Y
: : AARYNAS
e-g., x86 (CS107 studies this)
» Have special instructions for each thing you might

want to do

» Can write code with fewer instructions, because each
instruction is very expressive

= RISC:
)@struction set computers %

g WPS IN-N-OUT

» Have only a very tiny number of instructions, optimize O\ ?URGER
the heck out of them in the hardware )ﬁv"%

-

> Code may need to be longer because you have to goQ/Qc ‘ \¢ >KM
roundabout ways of achieving what you wanted 9 \C

N

McDonaid’s
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