
Computer Systems

Cynthia Lee

C S 1 0 7

Today’s Topics

LECTURE:

› More assembly code!

• More control flow

• Function call and return

• Some misc. instructions you might see in your assign5 binary bomb

Go here!

https://web.stanford.edu/class/cs107/guide_x86-64.html

2

https://web.stanford.edu/class/cs107/guide_x86-64.html

Conditional jumps

Typical 2-step control flow

4

1. Compare two values to write the condition codes (implicit
destination register)

› cmp, test

2. Conditionally jump based on reading the condition codes
(implicit source register)

› je, jne, jl, jg

 There is also a 1-step unconditional jump

 Doesn’t look at condition code, just goes no matter what

› jmp [target]

%eflags

See pp. 201-204 of B&O textbook

STEP 1 of control flow: cmp, test

5

 op1 and op2 can be any of the complex addressing modes we’ve seen

 Implicit destination %eflags contains condition codes

› Sequence of Boolean values packed into one register

› t is the result of the cmp or test operation above

• ZF = zero flag (t = 0)

• SF = sign flag (t < 0)

• CF = carry flag (there was a carry out of MSB*, i.e. unsigned overflow)

• OF = overflow flag (MSB* changed from 0 to 1, i.e. signed overflow)

• …

Op Source1 Source2 Dest Comments

cmp op2 op1 op1 – op2, sets condition codes

test op2 op1 op1 & op2, sets condition codes

* MSB = “Most Significant Bit”

Code example: %eflags and cmp

00000000004004f2 <if_then>:

4004f2: cmp $0x6,%edi

4004f5: jne 4004fa <if_then+0x8>

4004f7: add $0x1,%edi

4004fa: lea (%rdi,%rdi,1),%eax

4004fd: retq

Which of these flags are set (i.e., the corresponding bit of %eflags is 1)

after the cmp if we pass 107 to the if_then function?

A. ZF = zero flag (t = 0)

B. SF = sign flag (t < 0)

C. CF = carry flag (there was a carry out of MSB*, i.e. unsigned

overflow)

D. OF = overflow flag (MSB* changed from 0 to 1, i.e. signed overflow)

STEP 2 of control flow: jump

7

 Target is a memory address: the address of the instruction where we

should jump

 Implicit source %eflags contains condition codes

› Sequence of Boolean values packed into one register

• ZF = zero flag

• SF = sign flag

• CF = carry flag

• OF = overflow flag

• …

Op Target Remarks

jmp target Unconditional jump

je target Jump if ZF is 1, in other words op1-op2=0 in
previous cmp, in other words op1=op2

Control operations

cmpl op2, op1 # result = op1 - op2, discards result, sets condition

test op2, op1 # result = op1 & op2, discards result, sets condition

jmp target # unconditional jump

je target # jump equal, synonym jz jump zero (ZF=1)

jne target # jump not equal, synonym jnz (ZF=0)

jl target # jump less than, synonym jnge (SF!=OF)

jle target # jump less or equal, synonym jng (ZF=1 or SF!=OF)

jg target # jump greater than, synonym jnle (ZF=0 and SF=OF)

jge target # jump greater or equal, synonym jnl (SF=OF)

ja target # jump above, synonym jnbe (CF=0 and ZF=0)

jb target # jump below, synonym jnae (CF=1)

js target # jump signed (SF=1)

jns target # jump not signed (SF=0)

(detail note: in hex, target is specified as an offset from current
address)

8https://web.stanford.edu/class/cs107/guide_x86-64.html

Control operations

cmpl op2, op1 # result = op1 - op2, discards result, sets condition

test op2, op1 # result = op1 & op2, discards result, sets condition

jmp target # unconditional jump

je target # jump equal, synonym jz jump zero (ZF=1)

jne target # jump not equal, synonym jnz (ZF=0)

jl target # jump less than, synonym jnge (SF!=OF)

jle target # jump less or equal, synonym jng (ZF=1 or SF!=OF)

jg target # jump greater than, synonym jnle (ZF=0 and SF=OF)

jge target # jump greater or equal, synonym jnl (SF=OF)

ja target # jump above, synonym jnbe (CF=0 and ZF=0)

jb target # jump below, synonym jnae (CF=1)

js target # jump signed (SF=1)

jns target # jump not signed (SF=0)

9https://web.stanford.edu/class/cs107/guide_x86-64.html

Example of what this means: For jne following cmp, we will jump to

target if ZF=0 (and will continue to next instruction if ZF=1)

Code example: %eflags and cmp together with jne

00000000004004f2 <if_then>:

4004f2: cmp $0x6,%edi

4004f5: jne 4004fa

4004f7: add $0x1,%edi

4004fa: lea (%rdi,%rdi,1),%eax

4004fd: retq

What is the value of %rip after the jne instruction, if the input to the

function is 5?

A. 4004f5

B. 4004f7

C. 4004fa

D. Something else

Code example: %eflags and cmp together with jne

00000000004004f2 <if_then>:

4004f2: cmp $0x6,%edi

4004f5: jne 4004fa

4004f7: add $0x1,%edi

4004fa: lea (%rdi,%rdi,1),%eax

4004fd: retq

What value is returned from this function if the input to the function is 5?

(need to parse that lea instruction!)

A. 5

B. 6

C. 10

D. 11

E. 12

F. Something else

lea instruction
(gcc likes to use this, so you might see it in your assign5 bomb)

 “Load effective address”

› This instruction does some math, usually piecing together a

memory address in preparation to do a move

lea 0x20(%rsp), %rdi # register %rdi = %rsp + 0x20

› Unlike what we may expect from mov with indirect addressing

mode, this does NOT do any memory access

 Use for simple addition

› Because it just does math, not a dereference, sometimes you’ll

see gcc use it for addition that has nothing to do with memory

addresses

lea (%rdi,%rdi,1), %rax # register %rax = %rdi + %rdi

› Why wouldn’t gcc just use add? ¯_(ツ)_/¯

› Actually, there is a reason having to do with hardware

13

If statement construction (if without else)

int if_then(int param1)

{

if (param1 == 6)

param1++;

param1 *= 2;

return param1

}

gcc output

00000000004004f2 <if_then>:

4004f2: cmp $0x6,%edi

4004f5: jne 4004fa

4004f7: add $0x1,%edi

4004fa: lea (%rdi,%rdi,1),%eax

4004fd: retq

13

Control flow
C translation examples

15

If-else construction (if with else)

/* if-else */

if (num > 3) {

x = 10;

} else {

x = 7;

}

equivalent assembly pseudocode

Test

Skip past if-body if test fails

If-body

Skip past else-body

Else-body
[PAST ELSE-BODY]

15

Important idea:

don’t forget to skip

“else” when the

test was true!

16

For loop construction

/* for loop */

for (int i=0; i<n; i++) {

/* body */

}

/* equivalent while loop */

int i=0;

while (i<n) {

/* body */

i++;

}

pseudocode of what gcc
actually emits

Initialization

Skip loop Body down to Test

Body

Increment

Test

Return to Body if test succeeds

16

17

For loop construction

simpler code?

Initialization

Test

Skip past loop if Test fails

Body

Increment

Return back up to Test

pseudocode of what gcc

actually emits

Initialization

Skip loop Body down to Test

Body

Increment

Test

Return to Body if test succeeds

17

 Same length! Why does gcc use the format on the left?

Say for loop “for (int i=0; i<n; i++)” and n=0, n=1000

Compare the instructions executed in the left and right

A. LEFT and RIGHT have same number of instructions

B. LEFT has more instructions (bad for left)

C. RIGHT has more instructions (bad for right)

D. Other/help

Computer Architecture BIG IDEA:
Code with Smaller Static Instruction Count
!= Code with Smaller Dynamic Instruction Count

 Our two codes had the same number of instructions

› Same static instruction count

 If loop never executes, right had higher dynamic instruction count
(bad for right)

 If loop executes many times, left had higher dynamic instruction
count (bad for left)

 This lack of correlation is very common!

› There are even cases where the compiler emits a static instruction
count that is several times longer than an alternative, yet still more
efficient assuming loops execute many times (e.g. loop unrolling)

Discussion question:

 Does the compiler know that the loop will execute many times?

› In general, no!

 So…what if our code has loops that always execute a small number
of times? Did gcc make a bad decision?

18

(take EE108, EE180, CS316 for more)

Some instructions you
might see in your bomb
ASSIGN5 HOMEWORK HELP

movbz/movbs instructions

 “Move byte zero-extend” and “Move byte sign-extend”

movzbl %al, %edx

› Copy low (least-significant) byte from register %eax, zero-

extend to 4 bytes wide in %edx

movsbl %al, %edx

› Copy low (least-significant) byte from register %eax, sign-

extend to 4 bytes wide in %edx

› Sometimes you’ll see this as a way to zero out the top bytes

of a register

movzbl %al, %eax # notice src, dst are the same

nop/nopl instruction

 This instruction is pronounced “no-op,” which is short for “no operation”

 Literally it means to do nothing

› Only increments %rip

 gcc sometimes inserts them because ¯_(ツ)_/¯

› Actually the reason is for padding to make functions align on nice

multiple-of-8 memory address boundaries or something like that

 Also gives rise to a derogatory slang usage you may have heard from

computer scientists (e.g., “That person/thing is kind of a nop to me.”)

meaning someone or something that doesn’t necessarily do harm, but is

useless or unhelpful

Nuance of mov instruction

 Sometimes you’ll see this puzzlement in your code:

mov %ebx, %ebx

› What is that doing? Looks like a nop!

 gcc is likely using it to zero out the top 32 bits of the register

 When mov insruction is performed on a register whose name starts with

“e” (the 32-bit portion), the rest of the 64 bits (the part of the

corresponding “r”-named register beyond the “e” part) are cleared out to

all zeros

 Same as movbzl

Another strangely used instruction: xor

 Sometimes you’ll see this puzzlement in your code:

xor %ebx, %ebx

› What is that doing? XOR of a value with itself is always 0.

› So it’s setting ebx to zero? Why not:

mov $0, %ebx

 For strange processor hardware reasons, this may be faster (similar

reasons as to why gcc would choose lea instead of add)

