
Computer Systems

Cynthia Lee

C S 1 0 7

Today’s Topics

 Function call and return in x86-64

› Registers

› Call stack

NEXT TIME:

› NEW topic: the build process

• Taking a look at each step of the process

• Preprocessor, compiler, assembler, linker, loader

2

Registers associated with
function call and return
TOOLS FOR IMPLEMENTING FUNCTION CALL AND RETURN

Register state associated with function call and return

REGISTERS (ON CPU)

…

Stack pointer

1st argument

Return value

4th argument

…

2nd argument

3rd argument

5th argument

6th argument

If the function takes

more than 6

arguments, the extras

are stored on the

stack (in memory not

registers)

%rsp

%rdi

%rax

%rcx

%rsi

%rdx

%r8

%r9

Reminder: what is a stack frame?

MEMORY

0x0

main()

Heap

myfunction()

foo()

foo2()

Data

Text (code)

Terminology: “caller” and “callee”

 When talking about function call and return:

› the function that is calls another right now is called the “caller”

› the function that is being called is called the “callee”

 Of course, a function can simultaneously be a callee and a caller!

› In using these terms, we just try to be clear for the context which

particular caller-callee exchange we are speaking about.

main()

Heap

myfunction()

foo()

foo2()

Typical stack frame layout

Main memory

parm8

parm7

Return address

Local if need

Local if need

In
c
re

a
s
in

g
 m

e
m

o
ry

 a
d
d
re

s
s
e
s

Callee’s

stack

frame

%rsp

%rdi

%rax

%rcx

%rsi

%rdx

%r8

%r9

Caller’s

stack

frame

int caller() {
int x = callee(3, 5, 7, 9, 11, 13, 15, 17);
x++;
return x;

}int callee(int parm1, int parm2, int parm3, int
parm4, int parm5, int parm6, int parm7, int parm8) {

int local1 = parm1 + param2 + parm3 + parm4;
int local2 = parm5 + parm6 + parm7 + parm8;
return func(local1, local2);

}

How we address typical stack frame layout

Main memory

parm8

parm7

Return address

Callee local
if needed

Callee local
if needed

In
c
re

a
s
in

g
 m

e
m

o
ry

 a
d
d
re

s
s
e
s

0x10(%rsp)

0x8(%rsp)

<callee>:
add %esi,%edi
add %edx,%edi
add %ecx,%edi
add %r9d,%r8d
mov %r8d,%esi
add 0x8(%rsp),%esi
add 0x10(%rsp),%esi
callq 4006d0 <func>
repz retq

int callee(int parm1, int parm2, int parm3, int
parm4, int parm5, int parm6, int parm7, int parm8) {

int local1 = parm1 + param2 + parm3 + parm4;
int local2 = parm5 + parm6 + parm7 + parm8;
return func(local1, local2);

}

%rsp

Caller-saved registers
TOOLS FOR IMPLEMENTING FUNCTION CALL AND RETURN

Register usage: caller-saved and callee-saved

 There is only one copy of each register on the hardware

› Not the case that each function call or stack frame has their own copy!

 So if you write something to %rax, you write to the %rax that

EVEYRONE (in particular all other functions on the stack) sees

 If you write something to %rdi, you write to the %rdi that EVERYONE (in

particular all other functions on the stack) sees

 To prevent functions from trashing each others’ registers, we have caller-

saved and callee-saved register usage conventions

› A sort of etiquette for how to use registers in functions

Register usage: caller-saved and callee-saved

 Caller-saved: if you are the caller about to call another function, and you

care about keeping the value of a register that is designated as “caller-

saved” intact, you’d better copy that value elsewhere before making the

function call.

› It is not guaranteed that the value will be preserved by the callee!

› Your caller-saved register could be ruined by the callee!

› (If you are the callee, feel free to trash this register.)

 Callee-saved: if you are the callee about to change the value of a

register that is designated as “callee-saved,” you’d better copy that value

elsewhere before changing the register value, and then restore the value

from your saved copy before you return.

› Callee must guarantee that the value is preserved (either unchanged,

or at least restored to original state before returning).

› (If you are the caller, feel free to not save a copy of the register before

calling a function, it’s guaranteed to be there for you safe and sound

when the callee function returns!)

Saving backup copies of registers to the stack (memory)
using push and pop

 To save caller-saved registers, we often use the stack (in memory, not

registers)

 Two instructions help with this:

 push op1

› Take the value op1 and store it to the next free slot on the stack (push

onto the stack); adjust the %rsp to show that the stack now extends

lower than before because it has one more item

 pop op1

› Take the topmost (most recent) element on the stack and pop it off the
stack, storing it into op1; adjust the %rsp to show that the stack now

has one fewer item

Saving caller-saved values using push/pop

Main memory

Return address

In
c
re

a
s
in

g
 m

e
m

o
ry

 a
d
d
re

s
s
e
s

<recur>:
push %rbx
mov %edi,%ebx
test %edi,%edi
jle <recur+0x13>
lea -0x1(%rdi),%edi
callq 40060d <recur>
add %ebx,%eax
jmp <recur+0x18>
mov $0x0,%eax
pop %rbx
retq

int recur(int x)
{

if (x <= 0) return 0;
return x + recur(x-1);

}

%rsp

%rip

Saving caller-saved values using push/pop

Main memory

Return address

%rbx value

In
c
re

a
s
in

g
 m

e
m

o
ry

 a
d
d
re

s
s
e
s

<recur>:
push %rbx
mov %edi,%ebx
test %edi,%edi
jle <recur+0x13>
lea -0x1(%rdi),%edi
callq 40060d <recur>
add %ebx,%eax
jmp <recur+0x18>
mov $0x0,%eax
pop %rbx
retq

int recur(int x)
{

if (x <= 0) return 0;
return x + recur(x-1);

}

%rsp

%rip

Saving caller-saved values using push/pop

Main memory

Return address

%rbx value

In
c
re

a
s
in

g
 m

e
m

o
ry

 a
d
d
re

s
s
e
s

<recur>:
push %rbx
mov %edi,%ebx
test %edi,%edi
jle <recur+0x13>
lea -0x1(%rdi),%edi
callq 40060d <recur>
add %ebx,%eax
jmp <recur+0x18>
mov $0x0,%eax
pop %rbx
retq

int recur(int x)
{

if (x <= 0) return 0;
return x + recur(x-1);

}

%rsp

%rip

How we address typical stack frame layout

Main memory

Return address

In
c
re

a
s
in

g
 m

e
m

o
ry

 a
d
d
re

s
s
e
s

<recur>:
push %rbx
mov %edi,%ebx
test %edi,%edi
jle <recur+0x13>
lea -0x1(%rdi),%edi
callq 40060d <recur>
add %ebx,%eax
jmp <recur+0x18>
mov $0x0,%eax
pop %rbx
retq

int recur(int x)
{

if (x <= 0) return 0;
return x + recur(x-1);

}

%rsp

%rip

Your turn: the role of $rsp

Main memory

Return address

%rbx value

In
c
re

a
s
in

g
 m

e
m

o
ry

 a
d
d
re

s
s
e
s

<recur>:
push %rbx
mov %edi,%ebx
test %edi,%edi
jle <recur+0x13>
lea -0x1(%rdi),%edi
callq 40060d <recur>
add %ebx,%eax
jmp <recur+0x18>
mov $0x0,%eax
pop %rbx
retq

You saw on myth that we typically print the return

address using “p *(void**)$rsp” in gdb. Would that

work here? If not, how can we print the return

address?
A. p *(void**)$rsp (same thing works here)
B. p *(void**)($rsp + 0x8)
C. p *(void**)($rsp – 0x8)
D. Something else

%rsp

%rip

(optional study)
More complex stack
frame management
THIS IS A LESS-COMMON WAY OF MANAGING THE STACK

UNDER THE NEW X86-64, BUT YOU’LL SOMETIMES SEE IT IN

GCC OUTPUT

More complex stack frame layout (with rbp)
For use with complex non-leaf functions

Main memory

(Earlier stack frames)

Caller local variable

Arguments to callee (if the

callee function takes more

than 6 args)

Caller’s return address

Saved %rbp

Callee local variable

Callee local variable

Callee local variable

“Red zone” 128 bytes

In
c
re

a
s
in

g
 m

e
m

o
ry

 a
d
d
re

s
s
e
s

Caller’s stack frame

Callee’s stack frame

%rbp

%rsp

More complex stack frame
layout (with rbp)

Main memory

param8

param7

Return address

Saved %rbp

local1

local2

“Red zone” 128

bytesIn
c
re

a
s
in

g
 m

e
m

o
ry

 a
d
d
re

s
s
e
s

Callee’s

stack frame

%rbp

%rsp

%rdi

%rax

%rcx

%rsi

%rdx

%r8

%r9

Caller’s

stack

frame

How we address the more complex stack frame layout (with rbp)

Main memory

param8

param7

Return address

Saved %rbp

local1

local2

“Red zone” 128

bytesIn
c
re

a
s
in

g
 m

e
m

o
ry

 a
d
d
re

s
s
e
s

0x18(%rbp) #parameters are aligned on 8-byte

0x10(%rbp)

0x8(%rbp)

[current %rbp points here to saved rbp]

-0x4(%rbp)

-0x8(%rbp) [%rsp points here]

