Computer Systems
CS107

Cynthia Lee

Stanford University

Today's Topics

= Function call and return in x86-64
» Registers
y Call stack

NEXT TIME:
> NEW topic: the build process
« Taking a look at each step of the process
» Preprocessor, compiler, assembler, linker, loader

Stanford University

Registers associated with
function call and return

TOOLS FOR IMPLEMENTING FUNCTION CALL AND RETURN

Stanford University

Register state associated with function call and return

REGISTERS (ON CPU)

If the function takes
more than 6
arguments, the extras
are stored on the
stack (in memory not
registers)

Return value
1st argument
2"d argument
3'd argument
4" argument
5th argument
6th argument

Stack pointer

Z%rax
%rdi
%rsi
Zrdx
%rcx
%r8

%r9
%rsp

Stanford University

Reminder: what is a stack frame?

MEMORY main()

myfunction()

foo()

foo2()

Heap
Data

1
0x0 Text ‘codez

Stanford University

Terminology: “caller” and “callee”

= When talking about function call and return:
» the function that is calls another right now is called the “caller”
» the function that is being called is called the “callee”

= Of course, a function can simultaneously be a callee and a caller!

» In using these terms, we just try to be clear for the context which
particular caller-callee exchange we are speaking about.

main()

myfunction()

foo()
foo2()

_ Stanford University
Heab

Typical stack frame layout %rax
2 | %rdi
|
S | %rsi
%rdx
T Caller’s]
stack 9 | %rcx
O armg8 [S frame i
a1 [] %rs
5 arm/
= P [| D | %r9
> | (Return addr=ss !
2| Local if need Callee’s [%rsp
Q i stack -
S Local if need frame (lnt caller() { —~
(@) . .
e ! int x = ca11ee((3,\ 5, 7, 9, @
7)] . . — “\\-/ <
@ 8 X++;
. | return x;
= int callee(int parml, int parm2, int parm3, int |
parm4, %EE_QQEQS, int parm6, int parm7, int parm8) {

int call = _parml + param2 + parm3 + parmd;
int Qocal? = parm5 + parmé + parm7 + parm8;

return func(locall, local2);
runc 2ed_ s

How we address typical stack frame layout

Main memory

4}

Increasing memory addresses

parmg

arm7/

Return address

Callee 1local
if needed

Callee local
if needed

<
,gdd %esi,nedi
Ladd %edx,%edi>
add %ecx.%EaT_jf\\\\\
0x10(%rsp) {dd % =
D\ Or‘g@
Ox8(%rs mov %r8d, %sesi
. add Ox8(%rsp),%esi
‘\\\\\\\ dd 0x10 (%rsp)y%esi
4006deC -
= \ /rsp)\' C l} u\m'_Ln LIHC>\J

\

\

< .

parm4, int par
int loca
int loca
return

1,\ int par

, int parm3, int

8) {

Caller-saved registers

TOOLS FOR IMPLEMENTING FUNCTION CALL AND RETURN

Stanford University

Register usage: caller-saved and callee-saved

= There is only one copy of each register on the hardware
> Not the case that each function call or stack frame has their own copy!

= So if you write something to %rax, you write to the %rax that
EVEYRONE (in particular all other functions on the stack) sees

= |f you write something to %rdi, you write to the %rdi that EVERYONE (in
particular all other functions on the stack) sees

= To prevent functions from trashing each others’ registers, we have caller-
saved and callee-saved register usage conventions

» A sort of etiquette for how to use registers in functions

Stanford University

Register usage: caller-saved and callee-saved

= (Caller-saved: if you are the caller about to call another function, and you
care about keeping the value of a register that is designated as “caller-
saved” intact, you'd better copy that value elsewhere before making the
function call.

» Itis not guaranteed that the value will be preserved by the callee!
» Your caller-saved register could be ruined by the callee!
» (If you are the callee, feel free to trash this register.)

» (Callee-saved: if you are the callee about to change the value of a
register that is designated as “callee-saved,” you'd better copy that value
elsewhere before changing the register value, and then restore the value
from your saved copy before you return.

» Callee must guarantee that the value is preserved (either unchanged,
or at least restored to original state before returning).

» (If you are the caller, feel free to not save a copy of the register before
calling a function, it's guaranteed to be there for you safe and sound
when the callee function returns!)

Stanford University

Saving backup copies of registers to the stack (memory)
using push and pop

» To save caller-saved registers, we often use the stack (in memory, not
registers)

= Two instructions help with this:
= push opl
» Take the value op1 and store it to the next free slot on the stack (push

onto the stack); adjust the %rsp to show that the stack now extends
lower than before because it has one more item

" pop opl
» Take the topmost (most recent) element on the stack and pop it off the

stack, storing it into op1; adjust the %rsp to show that the stack now
has one fewer item

Stanford University

Saving caller-saved values using push/pop

Main memory

<recur>:
~ push 7 DX
mov %edi, %ebx
test %edi,%edi
jle <recur+ox13>
lea -ox1(%rdi) ,%edi

callg 40060d <recur>

Return address /| %rip add %ebx, %eax
\\\\\\\(r___ jmp <recur+0x18>
L

%rsp mov $0x0, %eax

Increasing memory addresses

pop %rbx
retq
int recur(int x)
{
if (x <= @) return 0;
return x + recur(x-1);
}

JLAIIIUIUO UIIIVUI DLLJ

Saving caller-saved values using push/pop

Main memory

4}

Return address

Increasing memory addresses

%rbx value —

<recur>:

push %rbx

mov %edi, %ebx

test %edi,%edi

jle <recur+ox13>

lea -ox1(%rdi),%edi

callg 40060d <recur>

/7 %rip add %ebx, %eax

jmp <recur+ox18>
— | %rsp mov $0x0, %eax

pop %rbx

retq

int recur(int x)

{

if (x <= @) return 0;
return x + recur(x-1);

JLAIIIVUIUI UIIIVUI Ol LJ

Saving caller-saved values using push/pop

Main memory

4}

Return address

Increasing memory addresses

%rbx value —

%rip

— %r

<recur>:

push %rbx

mov %edi, %ebx

test %edi,%edi

jle <recur+ox13>
lea -ox1(%rdi),%edi
callg 40060d <recur>
add %ebx, %eax

jmp <recur+ox18>
mov $0x0, %eax

pop %rbx

retq

int recur(int x)

{

if (x <= @) return 0;
return x + recur(x-1);

JLAIIIVUIUI UIIIVUI Ol LJ

How we address typical stack frame layout

Main memory

<recur>:
4 push %rbx
mov %edi, %ebx
test %edi,%edi
§ jle <recur+ox13>
0 lea -0x1(%rdi),%edi
S callg 40060d <recur>
g Return address %rip | add %ebx , %eax
2 jmp <recur+ox18>
2 o~ SRSp | mov $0x0, %eax
o pop %rbx
'% Mretqg
cd | 1
)
o
=
int recur(int x)
{
if (x <= @) return 0;
return x + recur(x-1);
}

JLAIIIUIUO UIIIVUI DLLJ

Your turn: the role of $rsp <recur>:

Main memory

Increasing memory addresses
4}

S
p3
@)

— =spush %rbx

mov %edi, %ebx

test %edi,%edi

jle <recur+o0x13>
lea -0x1(%rdi),%edi

callg 40060d <recur>
7 | %rip add %ebx , %eax

. jmp <recur+0x18>
%srsp |Lmov $0x0, %eax

ol U

You saw on myth that we typically print the return
address using “p “(void**)$rsp” in gdb. Would that
work here? If not, how can we print the return
address?

. p *(void**)$rsp (same thing works here)

A
(B. p *(void¥¥)(3rsp + 0x8))
C
D

. p ¥(void¥*)($rsp - 0x8)
. Something else

(optional study)
More complex stack
frame management

THIS IS A LESS-COMMON WAY OF MANAGING THE STACK
UNDER THE NEW X86-64, BUT YOU'LL SOMETIMES SEE IT IN

GCC OUTPUT
Stanford University

More complex stack frame layout (with rbp)
For use with complex non-leaf functions

Main memory

(Earlier stack frames)

Caller local variable

Arguments to callee (if the

callee function takes more Caller’s stack frame
than 6 args)

Caller’s return address
Saved %rbp
Callee local variable

%rbp —

Callee’s stack frame
Callee local variable

(o)
%PSP —— Callee local variable
“‘Red zone” 128 bytes

Increasing memory addresses

Stanford University

More complex stack frame

layout (with rbp)

Main memory

f
7p]
2 param8
4
=S param/
©
S| Return address
2| Saved %rbp
(D)
S locall
=
@ local2
S| “Red zone” 128
= | bytes

Caller’s

stack

frame

Z%rax
%rdi
%rsi
%rdx
Yrcx
%r8
%9

v

>

Callee’s
stack frame

%rsp

Stanford University

How we address the more complex stack frame layout (with rbp)

Main memory

#
§ param8 0x18(%rbp) #parameters are aligned on 8-byte
é param? 0x10(%rbp)
‘E Return address Ox8(%rbp)
E Saved %rbp [current %rbp points here to saved rbp]
Gg) locall -0x4(%rbp)
-% local2 -0x8(%rbp) [%rsp points here]
S| “Red zone” 128
= | bytes

Stanford University

