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Today's Topics

= Function call and return in x86-64
» Registers
y Call stack

NEXT TIME:
> NEW topic: the build process
« Taking a look at each step of the process
» Preprocessor, compiler, assembler, linker, loader
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Registers associated with
function call and return

TOOLS FOR IMPLEMENTING FUNCTION CALL AND RETURN
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Register state associated with function call and return

REGISTERS (ON CPU)

If the function takes
more than 6
arguments, the extras
are stored on the
stack (in memory not
registers)

Return value
1st argument
2"d argument
3'd argument
4" argument
5th argument
6th argument

Stack pointer

Z%rax
%rdi
%rsi
Zrdx
%rcx
%r8

%r9
%rsp
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Reminder: what is a stack frame?

MEMORY main()

myfunction()

foo()

foo2()

Heap
Data

1
0x0 Text ‘codez
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Terminology: “caller” and “callee”

= When talking about function call and return:
» the function that is calls another right now is called the “caller”
» the function that is being called is called the “callee”

= Of course, a function can simultaneously be a callee and a caller!

» In using these terms, we just try to be clear for the context which
particular caller-callee exchange we are speaking about.

main()

myfunction()

foo()
foo2()
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Typical stack frame layout %rax
2 | %rdi
|
S | %rsi
%rdx
T Caller’s ]
stack 9 | %rcx
O armg8 [S frame i
a1 [ ] %rs
5 arm/
= P [ | D | %r9
> | ( Return addr=ss !
2| Local if need Callee’s [ %rsp
Q i stack -
S Local if need frame (lnt caller() { —~
(@) . .
e ! int x = ca11ee((3,\ 5, 7, 9, @
7)] . . — “\\-/ <
@ 8 X++;
. | return x;
= int callee(int parml, int parm2, int parm3, int |
parm4, %EE_QQEQS, int parm6, int parm7, int parm8) {

int call = _parml + param2 + parm3 + parmd;
int Qocal? = parm5 + parmé + parm7 + parm8;

return func(locall, local2);
runc 2ed_ s




How we address typical stack frame layout

Main memory

4}

Increasing memory addresses

parmg

arm7/

Return address

Callee 1local
if needed

Callee local
if needed

<
,gdd %esi,nedi
Ladd  %edx,%edi>
add %ecx.%EaT_jf\\\\\
0x10(%rsp) {dd % =
D\ Or‘g@
Ox8(%rs mov %r8d, %sesi
. add Ox8(%rsp),%esi
‘\\\\\\\ dd 0x10 (%rsp)y%esi
4006deC -
= \ /rsp)\' C l} u\m'_Ln LIHC>\J

\

\

< .

parm4, int par
int loca
int loca
return

1,\ int par

, int parm3, int

8) {




Caller-saved registers

TOOLS FOR IMPLEMENTING FUNCTION CALL AND RETURN
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Register usage: caller-saved and callee-saved

= There is only one copy of each register on the hardware
> Not the case that each function call or stack frame has their own copy!

= So if you write something to %rax, you write to the %rax that
EVEYRONE (in particular all other functions on the stack) sees

= |f you write something to %rdi, you write to the %rdi that EVERYONE (in
particular all other functions on the stack) sees

= To prevent functions from trashing each others’ registers, we have caller-
saved and callee-saved register usage conventions

» A sort of etiquette for how to use registers in functions

Stanford University



Register usage: caller-saved and callee-saved

= (Caller-saved: if you are the caller about to call another function, and you
care about keeping the value of a register that is designated as “caller-
saved” intact, you'd better copy that value elsewhere before making the
function call.

» Itis not guaranteed that the value will be preserved by the callee!
» Your caller-saved register could be ruined by the callee!
» (If you are the callee, feel free to trash this register.)

» (Callee-saved: if you are the callee about to change the value of a
register that is designated as “callee-saved,” you'd better copy that value
elsewhere before changing the register value, and then restore the value
from your saved copy before you return.

» Callee must guarantee that the value is preserved (either unchanged,
or at least restored to original state before returning).

» (If you are the caller, feel free to not save a copy of the register before
calling a function, it's guaranteed to be there for you safe and sound
when the callee function returns!)
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Saving backup copies of registers to the stack (memory)
using push and pop

» To save caller-saved registers, we often use the stack (in memory, not
registers)

= Two instructions help with this:
= push opl
» Take the value op1 and store it to the next free slot on the stack (push

onto the stack); adjust the %rsp to show that the stack now extends
lower than before because it has one more item

" pop opl
» Take the topmost (most recent) element on the stack and pop it off the

stack, storing it into op1; adjust the %rsp to show that the stack now
has one fewer item
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Saving caller-saved values using push/pop

Main memory

<recur>:
~ push 7 DX
mov %edi, %ebx
test  %edi,%edi
jle <recur+ox13>
lea -ox1(%rdi) ,%edi

callg 40060d <recur>

Return address /| %rip add %ebx, %eax
\\\\\\\(r___ jmp <recur+0x18>
L

%rsp mov $0x0, %eax

Increasing memory addresses

pop %rbx
retq
int recur(int x)
{
if (x <= @) return 0;
return x + recur(x-1);
}
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Saving caller-saved values using push/pop

Main memory

4}

Return address

Increasing memory addresses

%rbx value —

<recur>:

push  %rbx

mov %edi, %ebx

test  %edi,%edi

jle <recur+ox13>

lea -ox1(%rdi),%edi

callg 40060d <recur>

/7 %rip add %ebx, %eax

jmp <recur+ox18>
— | %rsp mov $0x0, %eax

pop %rbx

retq

int recur(int x)

{

if (x <= @) return 0;
return x + recur(x-1);
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Saving caller-saved values using push/pop

Main memory

4}

Return address

Increasing memory addresses

%rbx value —

%rip

— %r

<recur>:

push  %rbx

mov %edi, %ebx

test  %edi,%edi

jle <recur+ox13>
lea -ox1(%rdi),%edi
callg 40060d <recur>
add %ebx, %eax

jmp <recur+ox18>
mov $0x0, %eax

pop %rbx

retq

int recur(int x)

{

if (x <= @) return 0;
return x + recur(x-1);
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How we address typical stack frame layout

Main memory

<recur>:
4 push  %rbx
mov %edi, %ebx
test  %edi,%edi
§ jle <recur+ox13>
0 lea -0x1(%rdi),%edi
S callg 40060d <recur>
g Return address %rip | add %ebx , %eax
2 jmp <recur+ox18>
2 o~ SRSp | mov $0x0, %eax
o pop %rbx
'% Mretqg
cd | 1
)
o
=
int recur(int x)
{
if (x <= @) return 0;
return x + recur(x-1);
}
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Your turn: the role of $rsp <recur>:

Main memory

Increasing memory addresses
4}

S
p3
@)

— =spush  %rbx

mov %edi, %ebx

test  %edi,%edi

jle <recur+o0x13>
lea -0x1(%rdi),%edi

callg 40060d <recur>
7 | %rip add %ebx , %eax

. jmp <recur+0x18>
%srsp  |Lmov $0x0, %eax

ol U

You saw on myth that we typically print the return
address using “p “(void**)$rsp” in gdb. Would that
work here? If not, how can we print the return
address?

. p *(void**)$rsp (same thing works here)

A
(B. p *(void¥¥)(3rsp + 0x8))
C
D

. p ¥(void¥*)($rsp - 0x8)
. Something else




(optional study)
More complex stack
frame management

THIS IS A LESS-COMMON WAY OF MANAGING THE STACK
UNDER THE NEW X86-64, BUT YOU'LL SOMETIMES SEE IT IN

GCC OUTPUT
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More complex stack frame layout (with rbp)
For use with complex non-leaf functions

Main memory

(Earlier stack frames)

Caller local variable

Arguments to callee (if the

callee function takes more Caller’s stack frame
than 6 args)

Caller’s return address
Saved %rbp
Callee local variable

%rbp —

Callee’s stack frame
Callee local variable

(o)
%PSP —— Callee local variable
“‘Red zone” 128 bytes

Increasing memory addresses
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More complex stack frame

layout (with rbp)

Main memory

f
7p]
2 param8
4
=S param/
©
S| Return address
2| Saved %rbp
(D)
S locall
=
@ local2
S| “Red zone” 128
= | bytes

Caller’s

stack

frame

Z%rax
%rdi
%rsi
%rdx
Yrcx
%r8
%9

v

>

Callee’s
stack frame

%rsp
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How we address the more complex stack frame layout (with rbp)

Main memory

#
§ param8 0x18(%rbp) #parameters are aligned on 8-byte
é param? 0x10(%rbp)
‘E Return address Ox8(%rbp)
E Saved %rbp [current %rbp points here to saved rbp]
Gg) locall -0x4(%rbp)
-% local2 -0x8(%rbp) [%rsp points here]
S| “Red zone” 128
= | bytes
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