
Computer Systems

Cynthia Lee

C S 1 0 7

Today’s Topics

LECTURE:

› The build process

• Taking a look at each step of the process

• Preprocessor, compiler, assembler, linker, loader

NEXT TIME:

› Managing the heap

• Important for your final assignment

TOPICS AFTER THAT:

› Code optimization

› Memory hierarchy

› The end!

ANNOUNCEMENTS:

› Start looking for a heap allocator assignment partner

2

Build components
UNDERSTANDING THE ROLE OF (AND POSSIBLE ERRORS IN)

EACH STEP OF “COMPILING”/BUILDING AN EXECUTABLE.

Build components

PREPROCESSOR:

› Takes #include and #define and other preprocessor directives and

replaces them with appropriate text (code.c + .h files  code.i)

• gcc –E code.c

COMPILER:

› Takes processed C code and outputs appropriate AMD64 code (code.i

 code.s)

• gcc –S code.c # uppercase S

ASSEMBLER:

› Takes assembly output and makes machine output (code.s  code.o)

• gcc –c code.c # lowercase c

LINKER:

› Takes .o in question, plus other module .o files, joins them together to

make the executable (code.o +.o files  code)

• gcc code.c –o code # lowercase o

4
gcc --save-temps –v # useful flags

Preprocessor
#ifndef _CVEC_H_

#define MAX_FRAG_LENGTH 1024

#include <stdio.h>

The Preprocessor

 Takes #include and #define and other preprocessor directives and

replaces them with appropriate text (code.c + .h files  code.i)

› gcc –E code.c

6

The Preprocessor

Dead simple:

just pastes text

› #include <foo.h>

• Pastes full text of foo.h

in place of this line

› #define FOO BAR

• Pastes “BAR” in place

of every “FOO”

7

› Doesn’t really understand much about C/C++ specifically

› Doesn’t do much of any error checking

• Will warn about unmatched/unterminated string literal quotes " "

• Can you think of one error it will give?

The Preprocessor: macros

 #define is not just for constant integers—replaces any keyword with

arbitrary other text

› #define MAX_FRAG_LENGTH 1000

› #define DO_FOREVER while(1)

› #define AVERAGE

 Macros with arguments:

› #define ABS(x) ((x) < 0 ? -(x) : (x))

 Macros tend to create non-obvious errors:

› Variables names accidentally overlap and are redefined or changed

• #define while if

› Non-obvious cause & effect

 Alternative: inline

static inline int Absolute(int x) {

return (x < 0 ? -x : x);

}

8

The Preprocessor: Your turn

 Here are a few source and header files:

basic.c: myinc1.h: myinc2.h:

 In what order are the global variables listed in basic.i?

A. five, three, four, one, two

B. one, three, five, four, two

C. one, three, five, two, four

D. one, two, three, four, five

E. Other

9

int one = 1;
#include "myinc1.h"
int two = 2;

int three = 3;
#include "myinc2.h"
int four = 4;

int five = 5;

Include interactions

 Here are a few source and header files:

basic.c: vector.h: pq.h:

 Which of the following errors does the above code generate?

A. undeclared variable(s) in basic.c

B. undeclared variable(s) in pq.h

C. Variable(s) are declared outside functions

D. re-declaration of variable(s)

E. Other/none/or more than one of the above

10

#include "vector.h"
#include "pq.h"

int main(int argc, char *argvp[]) {
v_global = pq_global;
...

int v_global = 5;
...

#include "vector.h"
int pq_global = 7;

void update() {
v_global++;

}
...

The Preprocessor: multiple include guards

 You’ve seen this in 106B and this quarter:

#ifndef _MY_INCLUDE_H_

#define _MY_INCLUDE_H_

[body of myinclude.h file]

#endif

 Preprocessor isn’t smart enough to handle problem of a file being

included multiple times

 This could lead to things like global variables being declared more than

once—compiler error!

 It’s on us to guard against multiple include by having the .h file set up its

own defense

11

Compiler
UNLIKE PREPROCESSOR, REALLY SMART!

Compilers are super smart

 (good ones anyway)

 Responsible for detecting syntax errors and semantic errors (e.g., type

errors)

 Responsible for determining best sequence of assembly instructions to

accomplish what C code asked for—optimizations!

 Wow, it does all that! What does it not do?

› Doesn’t fully resolve all symbols

› Some are given as prototypes, but not defined yet

› It will just leave a placeholder for these

 Look at “nm code.o” output to see symbols

13

Linker
ALL THE INGREDIENTS ARE CHOPPED, PREPARED, READY TO

GO. NOW WE COMBINE THEM FOR THE FINAL DISH!

Linker combines .o output of many modules

 Where did we leave off from the previous steps? (What does the

compiler not do?)

› Doesn’t fully resolve all functions and data

› Some are given as prototypes, but not defined yet

› Compiler will just leave a placeholder for these

 Linker:

› Wants to have one and only one definition for each symbol

› Combines text section for each module and lays them out in the

address space

› Now goes back to placeholders and fills them in (base address of the

text section for that module + offset within the module)

15

Static linking vs. dynamic linking

 Static linking

› All modules’ text section is actually built into the executable

› Completely stand-alone

› Very large file size

 Dynamic linking

› Standard libraries are held in common between executables on the

system

• Both on the file system, and also while running

› A more modern way of handling linking

16

Let’s Play: When does
that error show up?

Which component detects and alerts you to the problem?

 Here are a few source and header files:

basic.c:

A. Preprocessor

B. Compiler

C. Assembler

D. Linker

E. Other or Runtime or Never

18

#define TWO 2;
#include <stdio.h>

int main(int argc, char *argv[]) {
if (argc >= TWO) {

printf("%s\n", argv[1]);
}
return 0;

}

Which component detects and alerts you to the problem?

 Here are a few source and header files:

basic.c:

A. Preprocessor

B. Compiler

C. Assembler

D. Linker

E. Other or Runtime or Never

19

#define ONE 1
#define TWO 2
#include <stdioooo.h>

int main(int argc, char *argv[]) {
if (argc >= TWO) {

printf("%s\n", argv[1]);
}
return 0;

}

Which component detects and alerts you to the problem?

 Here are a few source and header files:

basic.c:

A. Preprocessor

B. Compiler

C. Assembler

D. Linker

E. Other or Runtime or Never

20

#define ONE 1
#define TWO 2
#include <stdio.h>

int main(int argc, char *argv[]) {
if (argc >= TWO) {

printfff(“%s\n”, argv[1]);
}
return 0;

}

Which component detects and alerts you to the problem?

 Here are a few source and header files:

basic.c:

A. Preprocessor

B. Compiler

C. Assembler

D. Linker

E. Other or Runtime or Never

21

#define ONE 1
#define TWO 2
#include <stdio.h>
void printfff(char* str, char* str2);
int main(int argc, char *argv[]) {

if (argc >= TWO) {
printfff(“%s\n”, argv[1]);

}
return 0;

}

Which component detects and alerts you to the problem?

 Here are a few source and header files:

basic.c:

A. Preprocessor

B. Compiler

C. Assembler

D. Linker

E. Other or Runtime or Never

22

#define ONE 1
#define TWO 2
//#include <stdio.h>
int printf(const char* format, ...);
int main(int argc, char *argv[]) {

if (argc >= TWO) {
printf(“%s\n”, argv[1]);

}
return 0;

}

Midterm #2 Information

Midterm #2

 Not intended to be “comprehensive” but at the same time can’t not be

(pointers continue to be important, obviously)

 Assign3

› Midterm 1 covered client use of cvector, Midterm 2 will cover

implementation side. Can you write a new function for cvector or

cmap? Can you write a malloc line of code to allocate a different kind

of blob? Can you join two blobs in a linked list?

 Assign4

› Minimal floating point question

› We already did integer representation and bitwise operators on

Midterm1, but perhaps minimal additional question on it

 Assign5

› Given a piece of assembly code, could you figure out the

corresponding C code?

› In-class exercises are good practice, as well as working on bomb

Binary Bomb Tips

Binary Bomb tips

1. Securely defuse your bomb

› What if, when running it in gdb, execution always stopped RIGHT
before things got dicey, wouldn’t that be nice? Hmm….how do we
cause gdb execution to stop in a specified location?

› Once you figure that out, you may want to set that up in your .gdbinit
file so you won’t accidentally forget to manually set it every time you
run gdb

2. Review the assembly code for your bomb

› Do objdump, save it to a file, and begin annotating the file with C code
and/or pseudocode translations of what is happening

› Suggestion: go through and normalize the register names so you can
make connections between places in the same function that are
talking about the same register but with different names (e.g. %rax =
%eax). It can be harder to quickly see the threads connecting parts
when the names are changing (keep in mind that very occasionally the
difference is meaningful for some reason—e.g. only one byte is
wanted—but still useful to connect the parts)

3. Level 5

› Tricky—lets’ talk about that….

