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Today’s Topics

LECTURE:

› Managing the heap

• Important for your final assignment assign7
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Build and runtime 
components
BUILDING ON PREVIOUS LECTURE…



Build components

PREPROCESSOR: 

› Takes #include and #define and other preprocessor directives and 

replaces them with appropriate text (code.c + .h files  code.i)

• gcc –E code.c

COMPILER:

› Takes processed C code and outputs appropriate IA32 (code.i 

code.s)

• gcc –S code.c # uppercase S

ASSEMBLER:

› Takes assembly output and makes machine output (code.s  code.o)

• gcc –c code.c # lowercase c

LINKER:

› Takes .o in question, plus other module .o files, joins them together to 

make the executable (code.o +.o files  a.out or code)

• gcc code.c –o code # lowercase o
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gcc --save-temps –v # useful flags



Let’s think about the output of the linker

LINKER:

› Takes .o in question, plus other module .o files, joins them together to 

make the executable (code.o +.o files  a.out or code)

› Output is the executable, what is that?

• It’s raw binary format, so might make sense to look at it in 

hexadecimal format, but vim takes those raw bytes and interprets 

them as ASCII, which of course gives nonsense.

• The contents of the executable are sections of code that are ready 

to be loaded directly into memory at the specified addresses in 

order to launch the program.

LOADER:  (PART OF THE OS)

› Takes the executable and maps each part (data, code) to memory 

from the executable file. Also sets up a stack (rbp, rsp), and 

environment and arguments (argv, argc from the command line). Sets 

rip to the beginning of main (which of course starts execution).

5



Linker output loading into memory to begin running
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Runtime components

LOADER:  (PART OF THE OS)

› Takes the executable and maps each part (data, code) to memory 

from the executable file. Also sets up a stack (rbp, rsp), and 

environment and arguments (argv, argc from the command line). Sets 

rip to the beginning of main (which of course starts execution).

HEAP MANAGER:

› We’ll talk about this now!
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Heap Manager
Remember what you know from being a client of malloc/free: 

The heap manager functions like a hotel front desk—handing 
out room assignments based on size needs (malloc), and 
checking people out when they’re ready to leave (free).



Heap Allocator: you (almost) don’t need a spec for this 
assignment!

 You will implement three functions, whose arguments, return values, 

and behavior, you already know:

 void *malloc(size_t num_bytes_requested)

 void *realloc(void *old_ptr, size_t new_bytes_requested)

 void  free(void *ptr)

 Other requirements/limits: 

 Maximum request size for a single request is INT_MAX bytes

 Must be fast (throughput) and make efficient use of space (utilization)

 No more than 500 bytes of global variables, other storage comes out of 

the heap memory you would otherwise give to user.
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Big picture: what do you have to work with?
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Big picture: what do you have to work with?
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Heap Manager: Example client code

void *a, *b, *c, *d, *e, *f;

a = malloc(4);

b = malloc(8);

c = malloc(4);

d = malloc(4);

free(a); 

free(c);

e = malloc(12);

b = realloc(b, 12);

d = realloc(d, 8);

f = malloc(12);
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Implementation #1: In-Use list + Free list

void *a, *b, *c, *d, *e, *f;

a = malloc(4);

b = malloc(8);

c = malloc(4);

d = malloc(4);

free(a); 

free(c);

e = malloc(12);

b = realloc(b, 12);

d = realloc(d, 8);

f = malloc(12);

In-Use: 

Free: 
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Big picture: what do you have to work with?
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Discussion question

Could the heap manager pause and do a “defrag” 

operation on the heap at this point?
› Move data in allocated areas over to coalesce free space into a 

contiguous block

› Don’t change size of any allocated block, and carefully copy data

A. YES, great idea! 

B. YES it can be done, but not a good idea for some reason (e.g., not 

efficient use of time)

C. NO, it can’t be done!

Why or why not?
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Implementation #2: Pre-node headers
with implicit free list

void *a, *b, *c, *d, *e, *f;

a = malloc(4);

b = malloc(8);

c = malloc(4);

d = malloc(4);

free(a); 

free(c);

e = malloc(12);

b = realloc(b, 12);

d = realloc(d, 8);

f = malloc(12);
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Discussion question

Anything about this approach strike you as a 

bit…dangerous?
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Implementation #3: Explicit free list

void *a, *b, *c, *d, *e, *f;

a = malloc(4);

b = malloc(8);

c = malloc(4);

d = malloc(4);

free(a); 

free(c);

e = malloc(12);

b = realloc(b, 12);

d = realloc(d, 8);

f = malloc(12);
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Back to the “defrag” idea:
› We can’t rearrange pointers at will for currently-allocated memory.

› However, there is nothing to stop us from taking adjacent already-

freed blocks and coalescing them into a larger freed block.

YES, great idea! 

The question is, given our free list is a linked list, how do we “notify” 

incoming pointers to free blocks that the block has now been aggregated 

into one conglomerate node? Hm….

• See textbook’s “footer” solution

19



Implementation #4: Explicit free list
bucketed by size

void *a, *b, *c, *d, *e, *f;

a = malloc(4);

b = malloc(8);

c = malloc(4);

d = malloc(4);

free(a); 

free(c);

e = malloc(12);

b = realloc(b, 12);

d = realloc(d, 8);

f = malloc(12);
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Implementation #4: Explicit free list
bucketed by size

void *a, *b, *c, *d, *e, *f;

a = malloc(4);

b = malloc(8);

c = malloc(4);

d = malloc(4);

free(a); 

free(c);

e = malloc(12);

b = realloc(b, 12);

d = realloc(d, 8);

f = malloc(12);
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How can we balance the conflicting goals of the heap 
manager?

Correctness

(obviously)
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Throughput 

(speed of handling requests)

Utilization

(not too many holes in space)



Your Pinterest Board of Design Ideas for Heap Allocator 

DIY Easy!
In-Use List +

Free List

Cute Storage 

Idea! 
Header holds 

block metadata 

adjacent to 

payload

Declutter Tip 
Coalesce 

adjacent free 

blocks to reduce 

fragmentation

Organize! 
Multiple free 

lists, bucketed 

by block size



Small

Medium

Large

Jumbo

It’s a drag to step through a lengthy free list, 

passing up block after block, because they’re all 

too small for your current malloc request.

One solution to this problem is bucketed free list. 

When a block is freed, add it to one of a handful of 

different free lists, based on its size. Then you 

know right where to look for a well-fitted block for 

new requests! 

Organize! 
Sort free list into buckets by size



Declutter Tip: 
Coalesce adjacent free blocks to reduce fragmentation

As we saw in some of the examples in lecture, 

after allocating many small blocks, and then 

freeing some of them, we may end up with 

enough total free memory to handle a large block 

request, but nevertheless not be able to fulfill it 

because the free memory is scattered 

(fragmented) throughout memory. 

One solution to this problem is coalescing. When 

a block is freed, look and see if its “next-door 

neighbors” on either side are also free. If so, then 

combine them into one larger free block. 

Think carefully about what pointer/offset 

infrastructure you will need to be able to do this 

coalescing. Some designs we talked about in 

class will only allow you to know where your next-

door neighbors are to one side (forward in a linked 

list), not the other side. This might be a tradeoff 

you’re willing to make for storage simplicity? Or 

you could try to find ways to go bidirectional.


