
Computer Systems

Cynthia Lee

C S 1 0 7

Today’s Topics

LECTURE:

› Managing the heap

• Important for your final assignment assign7

2

Build and runtime
components
BUILDING ON PREVIOUS LECTURE…

Build components

PREPROCESSOR:

› Takes #include and #define and other preprocessor directives and

replaces them with appropriate text (code.c + .h files  code.i)

• gcc –E code.c

COMPILER:

› Takes processed C code and outputs appropriate IA32 (code.i 

code.s)

• gcc –S code.c # uppercase S

ASSEMBLER:

› Takes assembly output and makes machine output (code.s  code.o)

• gcc –c code.c # lowercase c

LINKER:

› Takes .o in question, plus other module .o files, joins them together to

make the executable (code.o +.o files  a.out or code)

• gcc code.c –o code # lowercase o

4
gcc --save-temps –v # useful flags

Let’s think about the output of the linker

LINKER:

› Takes .o in question, plus other module .o files, joins them together to

make the executable (code.o +.o files  a.out or code)

› Output is the executable, what is that?

• It’s raw binary format, so might make sense to look at it in

hexadecimal format, but vim takes those raw bytes and interprets

them as ASCII, which of course gives nonsense.

• The contents of the executable are sections of code that are ready

to be loaded directly into memory at the specified addresses in

order to launch the program.

LOADER: (PART OF THE OS)

› Takes the executable and maps each part (data, code) to memory

from the executable file. Also sets up a stack (rbp, rsp), and

environment and arguments (argv, argc from the command line). Sets

rip to the beginning of main (which of course starts execution).

5

Linker output loading into memory to begin running

6

MEMORY

argv strings

Heap

Data

Text (code)

%rsp
main()

%rip

Data

Text (code)

EXECUTABLE FILE

(LINKER OUTPUT)

Operating

System code
loader

Runtime components

LOADER: (PART OF THE OS)

› Takes the executable and maps each part (data, code) to memory

from the executable file. Also sets up a stack (rbp, rsp), and

environment and arguments (argv, argc from the command line). Sets

rip to the beginning of main (which of course starts execution).

HEAP MANAGER:

› We’ll talk about this now!

7

Heap Manager
Remember what you know from being a client of malloc/free:

The heap manager functions like a hotel front desk—handing
out room assignments based on size needs (malloc), and
checking people out when they’re ready to leave (free).

Heap Allocator: you (almost) don’t need a spec for this
assignment!

 You will implement three functions, whose arguments, return values,

and behavior, you already know:

 void *malloc(size_t num_bytes_requested)

 void *realloc(void *old_ptr, size_t new_bytes_requested)

 void free(void *ptr)

 Other requirements/limits:

 Maximum request size for a single request is INT_MAX bytes

 Must be fast (throughput) and make efficient use of space (utilization)

 No more than 500 bytes of global variables, other storage comes out of

the heap memory you would otherwise give to user.

9

Big picture: what do you have to work with?

10

MEMORY

argv strings

Data (read-only)

Text (code)

%rsp
main()Operating

System code
Page manager

Data (global vars)

#include <stdio.h>

#define MAX_STR 1024

int global_variable_counter;

int main(int argc, char *argv[])
{

malloc()

Page
Page

Page

Big picture: what do you have to work with?

11

MEMORY

argv strings

Heap

Data (read-only)

Text (code)

%rsp
main()Operating

System code
Page manager

Data (global vars)

Assignment 7 limit: no more than

500 bytes global variable space

malloc()

Each page in assign7 is

4096 bytes. You grow this

heap area as needed

based on the malloc

requests you get (you in

turn request pages)

Heap Manager: Example client code

void *a, *b, *c, *d, *e, *f;

a = malloc(4);

b = malloc(8);

c = malloc(4);

d = malloc(4);

free(a);

free(c);

e = malloc(12);

b = realloc(b, 12);

d = realloc(d, 8);

f = malloc(12);

12

Implementation #1: In-Use list + Free list

void *a, *b, *c, *d, *e, *f;

a = malloc(4);

b = malloc(8);

c = malloc(4);

d = malloc(4);

free(a);

free(c);

e = malloc(12);

b = realloc(b, 12);

d = realloc(d, 8);

f = malloc(12);

In-Use:

Free:

13

52c

528

524

520

51c

518

514

510

50c

508

504

0x500

Big picture: what do you have to work with?

14

MEMORY

argv strings

Heap

Data (read-only)

Text (code)

%rsp
main()Operating

System code
Page manager

Data (global vars)

malloc()

Discussion question

Could the heap manager pause and do a “defrag”

operation on the heap at this point?
› Move data in allocated areas over to coalesce free space into a

contiguous block

› Don’t change size of any allocated block, and carefully copy data

A. YES, great idea!

B. YES it can be done, but not a good idea for some reason (e.g., not

efficient use of time)

C. NO, it can’t be done!

Why or why not?

15

Implementation #2: Pre-node headers
with implicit free list

void *a, *b, *c, *d, *e, *f;

a = malloc(4);

b = malloc(8);

c = malloc(4);

d = malloc(4);

free(a);

free(c);

e = malloc(12);

b = realloc(b, 12);

d = realloc(d, 8);

f = malloc(12);

16

Discussion question

How do we handle realloc(b, 12)?

53c

538

534

530

52c

528

524

520

51c

518

514

510

50c

508

504

0x500

Discussion question

Anything about this approach strike you as a

bit…dangerous?

17

Implementation #3: Explicit free list

void *a, *b, *c, *d, *e, *f;

a = malloc(4);

b = malloc(8);

c = malloc(4);

d = malloc(4);

free(a);

free(c);

e = malloc(12);

b = realloc(b, 12);

d = realloc(d, 8);

f = malloc(12);

18

53c

538

534

530

52c

528

524

520

51c

518

514

510

50c

508

504

0x500

Back to the “defrag” idea:
› We can’t rearrange pointers at will for currently-allocated memory.

› However, there is nothing to stop us from taking adjacent already-

freed blocks and coalescing them into a larger freed block.

YES, great idea!

The question is, given our free list is a linked list, how do we “notify”

incoming pointers to free blocks that the block has now been aggregated

into one conglomerate node? Hm….

• See textbook’s “footer” solution

19

Implementation #4: Explicit free list
bucketed by size

void *a, *b, *c, *d, *e, *f;

a = malloc(4);

b = malloc(8);

c = malloc(4);

d = malloc(4);

free(a);

free(c);

e = malloc(12);

b = realloc(b, 12);

d = realloc(d, 8);

f = malloc(12);

20

53c

538

534

530

52c

528

524

520

51c

518

514

510

50c

508

504

0x500

Implementation #4: Explicit free list
bucketed by size

void *a, *b, *c, *d, *e, *f;

a = malloc(4);

b = malloc(8);

c = malloc(4);

d = malloc(4);

free(a);

free(c);

e = malloc(12);

b = realloc(b, 12);

d = realloc(d, 8);

f = malloc(12);

21

Small

Medium

Large

Jumbo

How can we balance the conflicting goals of the heap
manager?

Correctness

(obviously)

22

Throughput

(speed of handling requests)

Utilization

(not too many holes in space)

Your Pinterest Board of Design Ideas for Heap Allocator

DIY Easy!
In-Use List +

Free List

Cute Storage

Idea!
Header holds

block metadata

adjacent to

payload

Declutter Tip
Coalesce

adjacent free

blocks to reduce

fragmentation

Organize!
Multiple free

lists, bucketed

by block size

Small

Medium

Large

Jumbo

It’s a drag to step through a lengthy free list,

passing up block after block, because they’re all

too small for your current malloc request.

One solution to this problem is bucketed free list.

When a block is freed, add it to one of a handful of

different free lists, based on its size. Then you

know right where to look for a well-fitted block for

new requests!

Organize!
Sort free list into buckets by size

Declutter Tip:
Coalesce adjacent free blocks to reduce fragmentation

As we saw in some of the examples in lecture,

after allocating many small blocks, and then

freeing some of them, we may end up with

enough total free memory to handle a large block

request, but nevertheless not be able to fulfill it

because the free memory is scattered

(fragmented) throughout memory.

One solution to this problem is coalescing. When

a block is freed, look and see if its “next-door

neighbors” on either side are also free. If so, then

combine them into one larger free block.

Think carefully about what pointer/offset

infrastructure you will need to be able to do this

coalescing. Some designs we talked about in

class will only allow you to know where your next-

door neighbors are to one side (forward in a linked

list), not the other side. This might be a tradeoff

you’re willing to make for storage simplicity? Or

you could try to find ways to go bidirectional.

