
Computer Systems

Cynthia Lee

Today’s materials adapted from Kevin Webb

at Swarthmore College

C S 1 0 7

Today’s Topics

TODAY’S LECTURE:

› Caching

ANNOUNCEMENTS:

› Assign6 & Assign7 due Friday!

• 6 & 7 NO late days allowed!

• Submit early and often! That way if a catastrophe happens at

deadline time and you can’t submit, at least you have some points

from your earlier submissions!

› Today’s lecture about cache *is* fair game for final exam, some

practice problems in lab this week (rest of lab will be final review)

› Final exam practice exams to be posted tomorrow

› I’ll have extra office hours this week

› Good luck everyone! <3 <3

2

Cache Performance Goal

 Goal:

› We want to have the entirety of main memory

available to the ALU to perform operations at the

speed of register access

 Reality says: LOL / “We all want things”

 It’s partly the cost that is a barrier (smaller/faster

memory is more expensive), but there are also physical

limitations

Aside: But wait, why does everyone have to work in one
building, what if there are smaller employers scattered
throughout?

 That’s essentially what distributed systems are (e.g. large datacenters)

The Memory Hierarchy

Local secondary storage (disk)

Larger
Slower
Cheaper
per byte

Remote secondary storage
(“the cloud”, Web servers / Internet)

~100 M cycles to access

On
Chip

Storage

Smaller
Faster
Costlier
per byte

Main memory
(DRAM)

~100 cycles to access

slower
than local

disk to access

Registers
1 cycle to access

Cache(s)
(SRAM)

~10’s of cycles to access

Flash SSD / Local network

0.0

0.1

1.0

10.0

100.0

1,000.0

10,000.0

100,000.0

1,000,000.0

10,000,000.0

100,000,000.0

1980 1985 1990 1995 2000 2003 2005 2010

n
s
 (

1
0

-9
 s

e
c
)

Year

Disk seek time

Flash SSD access time

DRAM access time

SRAM access time

CPU cycle time

Effective CPU cycle time

6

Growing gap between processor speed and memory
access speed

Disk

DRAM

CPU

SSD

SRAM

multicore

Really want to

avoid going to

disk for data

Want to

avoid going to

Main Memory

for data

Recall

 A cache is a smaller, faster memory, that holds a subset of a larger (slower)

memory

 We take advantage of locality (spatial and temporal) to keep data in cache

as often as we can!

 When accessing memory, we first check cache to see if it has the data we’re

looking for.

Breaking it down: why we miss…

COMPULSORY (COLD-START) MISS:

 First time we use data, load it into cache.

CAPACITY MISS:

 Cache is too small to store all the data we’re using.

CONFLICT MISS:

 To bring in new data to the cache, we evicted other data that we’re still

using.

Cache Design

LOT’S OF CHARACTERISTICS TO CONSIDER:

 Where should data be stored in the cache?

Main Memory Main Memory

Cache Cache

Cache Design

LOT’S OF CHARACTERISTICS TO CONSIDER:

 Where should data be stored in the cache?

 What size data chunks should we store? (block size)

Main Memory Main Memory

Cache Cache

Cache Design

LOT’S OF CHARACTERISTICS TO CONSIDER:

 Where should data be stored in the cache?

 What size data chunks should we store? (block size)

GOALS:

 Maximize hit rate

 Maximize (temporal & spatial) locality benefits

 Reduce cost/complexity of design

Design discussion:
Suppose the CPU asks for data, it’s not in cache.
We need to move in into cache from memory. Where in the
cache should it be allowed to go?

A. In exactly one place.

B. In a few places.

C. In most places, but not all.

D. Anywhere in the cache.

AL

U

Re

gs

Cache

Main Memory

Memory Bus

CPU

? ??

A. In exactly one place. (“Direct-mapped”)

 Every location in memory is directly mapped to one place in the cache.

Easy to find data.

B. In a few places. (“Set associative”)

 A memory location can be mapped to (2, 4, 8) locations in the cache.

Middle ground.

C. In most places, but not all.

D. Anywhere in the cache. (“Fully associative”)

 No restrictions on where memory can be placed in the cache. Fewer

conflict misses, more searching.

Design discussion:
A larger block size (caching memory in larger chunks) is
likely to exhibit…

A. Better temporal locality

B. Better spatial locality

C. Fewer misses (better hit rate)

D. More misses (worse hit rate)

E. More than one of the above. (Which?)

15

Block Size Implications

SMALL BLOCKS

 Room for more blocks

 Fewer conflict misses

LARGE BLOCKS

 Fewer trips to memory

 Longer transfer time

 Fewer cold-start misses

Main Memory Main Memory

Cache Cache

Trade-offs

There is no single best design for all purposes!

Common systems question: which point in the design space should we

choose?

Given a particular scenario:

 Analyze needs

 Choose design that fits the bill

Real CPUs

Goals: general purpose processing

 balance needs of many use cases

 middle of the road: jack of all trades, master of none

Typical: some associativity, medium size blocks:

 8-way associative (memory in one of eight places)

 16 or 32-byte blocks

Recall: How Memory Read Works

(1) CPU places address A on the memory bus.

ALU

Register file

Bus interface

0

Ax

Main memory
I/O bridge

%eax

Load operation: movl (A), %eaxCPU chip

Cache

Recall: How Memory Read Works

(1) CPU places address A on the memory bus.

(2) Memory sends back the value

ALU

Register file

Bus interface

0

Ax

Main memory
I/O bridge

%eax

Load operation: movl (A), %eax
CPU chip

Cache

Memory Address is the key to telling us a few things:

1. Is the block containing the byte(s) you want already in the cache?

2. If not, where should we put that block?

› Do we need to kick out (“evict”) another block?

3. Which byte(s) within the (multi-byte) block do you want?

A. In exactly one place. (“Direct-mapped”)

 Every location in memory is directly mapped to one place in the

cache. Easy to find data.

B. In a few places. (“Set associative”)

 A memory location can be mapped to (2, 4, 8) locations in the cache.

Middle ground.

C. In most places, but not all.

D. Anywhere in the cache. (“Fully associative”)

 No restrictions on where memory can be placed in the cache. Fewer

conflict misses, more searching.

Direct-Mapped

One place data can be.

Example: let’s assume some parameters:

 1024 cache locations (every block mapped to one)

 Block size of 8 bytes

Direct-Mapped

Line V D Tag Data (8

Bytes)

0

1

2

3

4

… …

1020

1021

1022

1023

Metadata

Cache Metadata

Valid bit: is the entry valid?

 If set: data is correct, use it if we ‘hit’ in cache

 If not set: ignore ‘hits’, the data is garbage

Dirty bit: has the data been written?

 Used by “write-back” caches

 If set, need to update memory before eviction

Direct-Mapped

ADDRESS DIVISION:

 Identify byte in block

› How many bits?

 Identify which row (line)

› How many bits?

Line V D Tag Data (8

Bytes)

0

1

2

3

4

… …

1020

1021

1022

1023

Direct-Mapped

ADDRESS DIVISION:

 Identify byte in block

› How many bits? 3

 Identify which row (line)

› How many bits? 10

Line V D Tag Data (8

Bytes)

0

1

2

3

4

… …

1020

1021

1022

1023

Direct-Mapped

ADDRESS DIVISION (64-BIT ADDRESS): Line V D Tag Data (8

Bytes)

0

1

2

3

4

… …

1020

1021

1022

1023

Index:

Which line (row) should we

check?

Where could data be?

Tag (51

bits)

Index (10

bits)

Byte offset (3

bits)

Direct-Mapped

ADDRESS DIVISION: Line V D Tag Data (8

Bytes)

0

1

2

3

4

… …

1020

1021

1022

1023

Index:

Which line (row) should we

check?

Where could data be?

Tag (51

bits)

Index (10

bits)

Byte offset (3

bits)

4

Direct-Mapped

ADDRESS DIVISION: Line V D Tag Data (8

Bytes)

0

1

2

3

4 1 4217

… …

1020

1021

1022

1023

In parallel, check:

Tag:

Does the cache hold the data we’re

looking for, or some other block?

Valid bit:

If entry is not valid, don’t trust garbage

in that line (row).

Tag (51

bits)

Index (10

bits)

Byte offset (3

bits)

4217 4

If tag doesn’t match,

or line is invalid, it’s a

miss!

Direct-Mapped

ADDRESS DIVISION: Line V D Tag Data (8

Bytes)

0

1

2

3

4 1 4217

… …

1020

1021

1022

1023

Byte offset tells us which

subset of block

to retrieve.

Tag (51

bits)

Index (10

bits)

Byte offset (3

bits)

4217 4

0 1 2 3 4 5 6 7

Direct-Mapped

ADDRESS DIVISION: Line V D Tag Data (8

Bytes)

0

1

2

3

4 1 4217

… …

1020

1021

1022

1023

Byte offset tells us which

subset of block

to retrieve.

Tag (51

bits)

Index (10

bits)

Byte offset (3

bits)

4217 4 2

0 1 2 3 4 5 6 7

Direct-Mapped Example

SUPPOSE OUR ADDRESSES ARE 16 BITS LONG.

OUR CACHE HAS 16 ENTRIES, BLOCK SIZE OF 16 BYTES

 4 bits in address for the index

 4 bits in address for byte offset

 Remaining bits (8): tag

33

Direct-Mapped Example

LET’S SAY WE ACCESS MEMORY AT

ADDRESS:

 0110101100110100

STEP 1:

 Partition address into tag, index,

offset

Line V D Tag Data (16

Bytes)

0

1

2

3

4

5

…

15

34

Direct-Mapped Example

LET’S SAY WE ACCESS MEMORY AT

ADDRESS:

 01101011 0011 0100

STEP 1:

 Partition address into tag, index,

offset

Line V D Tag Data (16

Bytes)

0

1

2

3

4

5

…

15

35

Direct-Mapped Example

LET’S SAY WE ACCESS MEMORY AT

ADDRESS:

 01101011 0011 0100

STEP 2:

 Use index to find line (row)

 0011 -> 3

Line V D Tag Data (16

Bytes)

0

1

2

3

4

5

…

15

36

Line V D Tag Data (16

Bytes)

0

1

2

3

4

5

…

15

Direct-Mapped Example

LET’S SAY WE ACCESS MEMORY AT

ADDRESS:

 01101011 0011 0100

STEP 2:

 Use index to find line (row)

 0011 -> 3

37

Line V D Tag Data (16

Bytes)

0

1

2

3

4

5

…

15

Direct-Mapped Example

LET’S SAY WE ACCESS MEMORY AT

ADDRESS:

 01101011 0011 0100

NOTE:

 ANY address with 0011 (3) as the

middle four index bits will map to

this cache line.

 e.g. 11111111 0011 0000

So, which data is here?

Data from address

0110101100110100

OR

1111111100110000?

Use tag to store high-order bits.

Let’s us determine which data is

here! (many addresses map here)

38

Line V D Tag Data (16

Bytes)

0

1

2

3
01101011

4

5

…

15

Direct-Mapped Example

LET’S SAY WE ACCESS MEMORY AT

ADDRESS:

 01101011 0011 0100

STEP 3:

 Check the tag

 Is it 01101011 (hit)?

 Something else (miss)?

 (Must also ensure valid)

Extra Slides

We didn’t cover these in lecture since everyone seemed

overwhelmed by heap allocator work, but the sample

problems covered might be helpful review for the final

exam (no new concepts here, just new practice).

M O R E P R A C T I C E

Extra Example 1

Eviction

If we don’t find what we’re looking for (miss), we need to bring in the data

from memory.

Make room by kicking something out.

 If line to be evicted is dirty, write it to memory first.

Another important systems distinction:

 Mechanism: An ability or feature of the system.

What you can do.

 Policy: Governs the decisions making for using the mechanism. What you

should do.

Eviction: Direct-Mapped

ADDRESS DIVISION: Line V D Tag Data (8

Bytes)

0

1

2

3

4

… …

1020 1 0 1323 57883

1021

1022

1023

Find line:

Tag doesn’t match, bring in

from memory.

If dirty, write back first!

Tag (19

bits)

Index (10

bits)

Byte offset (3

bits)

3941 1020

Eviction: Direct-Mapped

ADDRESS DIVISION: Line V D Tag Data (8

Bytes)

0

1

2

3

4

… …

1020 1 0 1323 57883

1021

1022

1023

Tag (19

bits)

Index (10

bits)

Byte offset (3

bits)

3941 1020

Main Memory

1. Send address

to read main

memory.

Eviction: Direct-Mapped

ADDRESS DIVISION: Line V D Tag Data (8

Bytes)

0

1

2

3

4

… …

1020 1 0 3941 92

1021

1022

1023

Tag (19

bits)

Index (10

bits)

Byte offset (3

bits)

3941 1020

Main Memory

1. Send address

to read main

memory.

2. Copy data from memory.

Update tag.

Extra Example 2

Your turn: Suppose we had 8-bit addresses, a
cache with 8 lines, and a block size of 4 bytes.

How many bits would we use for:

 Tag?

 Index?

 Offset?

Your turn: Suppose we had 8-bit addresses, a
cache with 8 lines, and a block size of 4 bytes.

How many bits would we use for:

 Tag?

 Index?

 Offset?

Extra Example 3

How would the cache change if we performed
the following memory operations?

READ 01000100 (VALUE: 5)

READ 11100010 (VALUE: 17)

WRITE 01110000 (VALUE: 7)

READ 10101010 (VALUE: 12)

WRITE 01101100 (VALUE: 2)

Line V D Tag Data (4 Bytes)

0
1 0 111 17

1
1 0 011 9

2
0 0 101 15

3
1 1 001 8

4
1 0 011 4

5
0 0 111 6

6
0 0 101 32

7
1 0 110 3

Memory

address

How would the cache change if we performed
the following memory operations?

READ 01000100 (VALUE: 5)

READ 11100010 (VALUE: 17)

WRITE 01110000 (VALUE: 7)

READ 10101010 (VALUE: 12)

WRITE 01101100 (VALUE: 2)

Line V D Tag Data (4 Bytes)

0
1 0 111 17

1
1 0 011 010 9 5

2
0 0 101 15

3
1 1 001 8

4
1 0 011 4

5
0 0 111 6

6
0 0 101 32

7
1 0 110 3

Memory

address

How would the cache change if we performed
the following memory operations?

READ 01000100 (VALUE: 5)

READ 11100010 (VALUE: 17)

WRITE 01110000 (VALUE: 7)

READ 10101010 (VALUE: 12)

WRITE 01101100 (VALUE: 2)

Line V D Tag Data (4 Bytes)

0
1 0 111 17

1
1 0 011 010 9 5

2
0 0 101 15

3
1 1 001 8

4
1 0 011 4

5
0 0 111 6

6
0 0 101 32

7
1 0 110 3

Memory

address

No change necessary.

How would the cache change if we performed
the following memory operations?

READ 01000100 (VALUE: 5)

READ 11100010 (VALUE: 17)

WRITE 01110000 (VALUE: 7)

READ 10101010 (VALUE: 12)

WRITE 01101100 (VALUE: 2)

Line V D Tag Data (4 Bytes)

0
1 0 111 17

1
1 0 011 010 9 5

2
0 0 101 15

3
1 1 001 8

4
1 0

1

011 4 7

5
0 0 111 6

6
0 0 101 32

7
1 0 110 3

Memory

address

How would the cache change if we performed
the following memory operations?

READ 01000100 (VALUE: 5)

READ 11100010 (VALUE: 17)

WRITE 01110000 (VALUE: 7)

READ 10101010 (VALUE: 12)

WRITE 01101100 (VALUE: 2)

Line V D Tag Data (4 Bytes)

0
1 0 111 17

1
1 0 011 010 9 5

2
0

1

0 101 101 15 12

3
1 1 001 8

4
1 0

1

011 4 7

5
0 0 111 6

6
0 0 101 32

7
1 0 110 3

Memory

address

Note: tag happened to

match, but line was

invalid.

How would the cache change if we performed
the following memory operations?

READ 01000100 (VALUE: 5)

READ 11100010 (VALUE: 17)

WRITE 01110000 (VALUE: 7)

READ 10101010 (VALUE: 12)

WRITE 01101100 (VALUE: 2)

Line V D Tag Data (4 Bytes)

0
1 0 111 17

1
1 0 011 010 9 5

2
0

1

0 101 101 15 12

3
1 1

1

001 011 8 2

4
1 0

1

011 4 7

5
0 0 111 6

6
0 0 101 32

7
1 0 110 3

Memory

address

1. Write dirty line to memory.

2. Load new value, set it to

2, mark it dirty (write).

Extra Example 4

Cache Conscious Programming

Knowing about caching and designing code around it can significantly effect

performance

Example: 2D array accesses

 Algorithmically, both O(N * M)

 Is one faster than the other?

for(i=0; i < N; i++) {

for(j=0; j< M; j++) {

sum += arr[i][j];

}}

for(j=0; j < M; j++) {

for(i=0; i< N; i++) {

sum += arr[i][j];

}}

Cache Conscious Programming

Knowing about caching and designing code around it can significantly effect

performance

Example: 2D array accesses

 Algorithmically, both O(N * M)

 Is one faster than the other?

A. Left one is faster

B. Right one is faster

C. Same

for(i=0; i < N; i++) {

for(j=0; j< M; j++) {

sum += arr[i][j];

}}

for(j=0; j < M; j++) {

for(i=0; i< N; i++) {

sum += arr[i][j];

}}

Cache Conscious Programming

The first (left) nested loop is more efficient if the cache block size is larger than

a single array bucket (for arrays of basic C types, it will be).

(ex) 1 miss every 4 buckets vs. 1 miss every bucket

for(i=0; i < N; i++) {

for(j=0; j< M; j++) {

sum += arr[i][j];

}}

for(j=0; j < M; j++) {

for(i=0; i< N; i++) {

sum += arr[i][j];

}}

1 2 3 4 5 6 7 8 9 1

0

1

1

1

2

1

3

1

4

1

5

1

6

. . .

.

.

.

1 . . .

2

3

4

.

.

.

