
Computer Systems

Cynthia Lee

C S 1 0 7

Today’s Topics

› More pointers and arrays

• Review from CS106B/X, but digging deeper

› More strings

› Quickly for assign1:

• files in C

• error() function

NEXT LECTURE:

› Dynamic memory with malloc and free

› Memory layout and segments

 For today (optional):

› You may want to connect to myth and follow along:

› cp –r /afs/ir/class/cs107/samples/lect3/ ~

2

Pointers!
CULTURE FACT: IN CODE, IT’S NOT CONSIDERED RUDE TO

POINT.

Pointers in C

 Pointers are fundamental to almost everything in C

› We’ll spend the quarter understanding why

› Partly has to do with memory addresses being so

fundamental to hardware and assembly, and C being a

very thin layer between you and hardware/assembly

Why do we need pointers? What are they good for?

 Pointers shine in times when you want to share data structures between

different components of your code

› Imagine looking inside a program for managing student and class

information at Stanford

• But not Axess because //shudder//

› Each student has a bulky record including vital stats, history, etc.

› Classes “point” to each enrolled student, not have own bulky copy

Why do we need pointers? What are they good for?

 Pointers shine in times when you want to have flexibility for on-the-fly

changes to the data you’re storing

› Grow and shrink collection size dynamically

› Insert and remove elements into an ordered structure without needing

a ton of reshuffling (think link list or tree structures)

 Pointers shine in times when you want to have data lifespan not so

closely tied to function call/return

› Allocate something in a function, but keep it when the function returns

(this last reason will make more sense when we talk more about stack vs

heap next time)

Pointers and memory
addresses
SOME EXAMPLES

Memory addresses: 106B/X review

 When you declare a variable, it is necessarily stored

somewhere in memory

 You can ask for any variable's memory address with the

& operator (“address-of”)

int x = 12;

int *p = &x;

 Memory addresses are usually written as hexadecimal

(base-16 or “hex”) numbers

› Ex: 0x28F620

 Prefix “0x” is a visual cue that this is a hex number

(not really part of the number)
0

0x28F620

55

12

…

Memory addresses: some examples

int main(int argc, char *argv[]) {

int x = 12;

int *p = &x;

printf("%d\n", x);

printf("%p\n", p);

 What do the last two lines do?

› (answer separately for each line)

 Compiler warning or error

 Runtime error or crash

 Prints 12 twice

 Prints 12 and something else

 Prints something else

…

…

Memory
addresses

Memory

0x0

0x4

0x28F620

0x28F624

0x28F628

0x28F62C

0x28F630

Dereference operator *

 Note this is a different use of * from the type declaration

int x = 5;

int *p = &x; // p has type "pointer to int"

printf("%d\n", *p); // dereferencing p

 * ONLY works on variables that are pointer types

› Unlike address-of &, which works on any variable

 “Follows” the pointer to the destination for a read or write of
that value

› (in this class we call that value the “pointee,” but that’s not
an official term)

 & - takes data and asks for its address

 * - takes an address and asks for its data 0

Memory addresses: some examples

int main(int argc, char *argv[]) {

int x = 5;

int y = 7;

int *p = &x

int *q = &y;

 Do these lines of code do the same thing?

*p = y;

p = &y;

A. YES!

B. NO!

C. I don’t know!! 0

5

7

x:

y:

p:

q:

Arrays, Pointers, Strings,
and Pointer Arithmetic

We can add one to a pointer to access the next
element in the array

int main(int argc, char *argv[]) {

double arr[3];

double *ptr = arr;

ptr[0] = 3.5;

ptr[1] = 3.8;

ptr[2] = 4.0;

printf("%p => %g\n", ptr, *ptr);

printf("%p => %g\n", ptr+1, *(ptr+1));

printf("%p => %g\n", ptr+1, ptr[1]);

› Important note: the last two lines are completely equivalent. C invented the

array[index] notation as a shorthand version of *(array + index) notation,

because it is so common to want to do that and the latter is clunky.

ptr

4.0

3.8

3.5

arr 0

1

2

Code example:
print_args_ending_in_end
Prints all of its arguments that end in the suffix –“end"

