
Computer Systems

Cynthia Lee

C S 1 0 7

Topics

LAST TIME:

› Pointers and arrays (including strings—arrays of char)

› Pointer arithmetic

› Strings

› Files, error() reporting

THIS TIME:

› Two tools/tricks that help us understand memory:

• “sizeof”

• When sizeof works on an array and when it doesn’t

› Dynamic memory: malloc and free

› Where’s my data?

• Stack vs heap vs data segment

› Pointers to pointers

2

Code example: sizes.c, ptr.c
SEE SAMPLES/LECT4 DIRECTORY ON MYTH FOR CODE

Applying this to an example
from last time

We can add one to a pointer to access the next
element in the array

int main(int argc, char *argv[]) {

double arr[3];

double *ptr = arr;

ptr[0] = 3.5;

ptr[1] = 3.8;

ptr[2] = 4.0;

printf("%p => %g\n", ptr, *ptr);

printf("%p => %g\n", ptr+1, *(ptr+1));

printf("%p => %g\n", ptr+1, ptr[1]);

› Important note: the last two lines are completely equivalent. C invented the

array[index] notation as a shorthand version of *(array + index) notation,

because it is so common to want to do that and the latter is clunky.

ptr

4.0

3.8

3.5

arr 0

1

2

Dynamic memory:
malloc and free

Arrays in C (on the heap)

int main(int argc, char *argv[]) {

/* one-step process for stack */

double arr1[3];

/* two-step process for heap */

double *ptr;

ptr = malloc(3*sizeof(double)); //calloc similar but 0-fills

 All about malloc:

› Like “new” in C++, but more basic

• void * malloc(int);

Returns pointer to

the location it has

reserved for you

Takes an integer number

of bytes to allocate (you

need to do the math on

how much you need)

Heap memory works like a hotel registration desk

(GOLDEN GLOBE WINNER GRAND BUDAPEST HOTEL)

malloc’s best friends: realloc and free

int main(int argc, char *argv[]) {

double *ptr;

ptr = malloc(3*sizeof(double));

ptr[0] = 2.5;

ptr = realloc(ptr, 5 * sizeof(double));

free(ptr);

 All about realloc:

› It gives you a larger (or smaller) space, still contiguous!

› If the adjacent space was unused, will give you that

• Otherwise will copy values over for you to a new, bigger space

 All about free:

› Like new/delete in C++, malloc/free always needs to come in pairs!

› Failing to free something you malloc-ed when you are done using it is a

memory leak

 Of course, after you realloc or free memory, you never try to access it

again….

malloc + free example

int main(int argc, char *argv[]) {

double arr[] = {3.5, 3.8, 4.0};

double *ptr = malloc(3*sizeof(double));

ptr[0] = 3.5;

ptr[1] = 3.8;

ptr[2] = 4.0;

free(ptr);

4.0

3.8

3.5

arr

ptr

Stack Heap

4.0

3.8

3.5

4.0

3.8

3.5

Only a someone like Norman Bates would access a hotel room
that isn’t theirs (either never was, or was but checked out)

(DON’T BE A NORMAN BATES!!)

Arrays and Pointers

Pointers and arrays

int main(int argc, char *argv[]) {

double arr[] = {3.5, 3.8, 4.0};

double *ptr = malloc(3*sizeof(double));

ptr = arr; /* is this ok? */

 Hmmm…what happens in this case?

4.0

3.8

3.5

arr

ptr

Stack Heap

Pointers and arrays

int main(int argc, char *argv[]) {

double arr[] = {3.5, 3.8, 4.0};

double *ptr = malloc(3*sizeof(double));

ptr = arr; /* last slide: leaks! */

arr = ptr; /* is this ok? */

 Hmmm…what happens in this case?

4.0

3.8

3.5

arr

ptr

Stack Heap

Strings in C
RECAP OF MEMORY DIAGRAMS OF THEIR POSSIBLE LOCATIONS IN

MEMORY

Strings in C: just an array of chars, but with a special ending
sentinel value

int main(int argc, char *argv[]) {

int x = 4;

char str[] = "hello";

 What does memory look like?

Strings and strdup: the gory details

int main(int argc, char *argv[]) {

int x = 4;

char *str = strdup("hello");

 What does memory look like?

Strings and malloc: the gory details

int main(int argc, char *argv[]) {

int x = 4;

char *str = malloc(6); //why not 5?

strcpy(str, "hello");

 What does memory look like?

Strings in C: even gorier details

int main(int argc, char *argv[]) {

int x = 4;

char *str = "hello";

 What does memory look like?

Strings in C: more gory details

int main(int argc, char *argv[]) {

int x = 4;

char *str = "hello";

 What memory looks like, updated version with more detail:

Heap

Stack

0

Heap

Stack

0
Text

argv, env

Data constants

Other data

Strings in C: even gorier details [CORRECT ANSWER]

int main(int argc, char *argv[]) {

int x = 4;

char *str = "hello";

 What does memory look like?

Strings in C: Leonardo DiCaprio cauterizing his own wound
in the Revenant level of gory details*

int main(int argc, char *argv[]) {

int x = 4;

char *str = "hello";

str[4] = 'a'; /* not allowed – read only */

str = NULL; /* ok! not a memory leak! */

* confession: I haven’t seen it, only heard about it

Strings in C: passing them
as arguments

Passing strings as arguments:
code demo key points

void lowercase(char *str) {

 You don’t need to pass length (be careful with this)

 You may alter the contents of a char* argument

Strings in C: what does char* parameter passing look like in
memory?

void lowercase(char *str) {

char * lower = strdup(str);

for (int i=0; str[i] != '\0'; i++){

lower[i] = tolower(lower[i]);

}

str = lower;

}

int main(int argc, char *argv[]) {

int x = 4;

char *str = strdup("HeLLo");

lowercase(str);

printf("%s\n", str);

free(str);

}

 What does memory look like?

Passing strings as arguments

 You don’t need to pass length (assuming the string is correctly set up with

a null terminating character)

 You may alter the contents of a char* argument, but not redirect the

pointer

› For example, if you want to lengthen the string, you’re out of luck with

char*

› If you want to do this, add a level of indirection that gives you access to

the char* pointer itself: char** (this is essentially passing the pointer by

reference), or return a char*

void lowercase(char **str) {

char* lowercase(char *str) {

