Computer Systems

Cynthia Lee

Today's Topics

LAST TIME:

- Wrap-up of C programming topics:
 - > Function pointers, callbacks

THIS TIME:

- Number representation
 - > Integer representation
 - > Signed numbers with two's complement

NEXT TIME:

- Friday is last day of topics that will be included on next week's mditerm
 - > Reasoning about special conditions with signed and unsigned
 - Overflow and underflow conditions
 - Comparison operators (< >) with signed and unsigned
 - > Bytes, bits, bitwise operators

Binary

Solo hay 10 tipos de personas en el mundo: los que entienden binario y los que no

Bits and Bytes

THE BUILDING BLOCKS OF EVERYTHING IN THE COMPUTER

Bits and Bytes: essential facts

- "Bit" is a <u>b</u>inary digit, 0 or 1
- "Byte" is 8 bits (one char)
- Our system is "byte-addressable," meaning each address refers to storage space for 1 byte
- The char, short, int, long family of types:
 char is 1 byte = 8 bits
 2⁸ = 256 possible char values
 - short is 2 bytes = 16 bits
 - $2^{16} = 65,536$ possible short values
 - > int is 4 bytes = 32 bits
 - 2³² = 4,294,967,296 possible int values (~4 billion)
 - > long is 8 bytes = 64 bits
 - 2⁶⁴ = 18,446,744,073,709,551,616 possible long values (~18 quintillion)

There are only 10 types of people in the world: Those who understand binary and those who don't.

Bits as *Unsigned* Base 2 Numbers

10 100 100 l 1,234 10^{3} 10^{2} 10' 10' Ę 600 f 200f z30 2

22222 (68421 \bigcirc

Self-test: Integer representation in binary

What is the unsigned 4-bit binary representation of 14?

Self-test: Integer representation in binary

e) Other

	Base 10	Base 2 (4-bit)	Base 16
Hexadecimal (base 16)	0	0000	0
	1	0001	1
	2	0010	2
	3	0011	3
	4	0100	4
	5	0101	5
	6	0110	6
	7	0111	7
	8	1000	8
	9	1001	9
	10	1010	А
	11	1011	В
	12	1100	С
	13	1101	D
	14	1110	E
	15	(1111	F

Self-test: Integer representation in hexadecimal

What is the unsigned binary equivalent of the unsigned hexadecimal number 0x2BEEF1?

2 B E E F 1 DOID IUIL IIIO IIIO IIII 00001

char [-128, 127] unsigned char LO, 255] CO, 256) sighbit Sigh-magnitude 6000 6 ()00Stanford University

14

Bits as *Signed* Base 2 Numbers

Self-test: Two's complement

 $\frac{11}{11012} = -3$ $\frac{11012}{2} = -3$

←

→ C 🗋 stackoverflow.com/questions/94591/what-is-the-maximum-value-for-a-int32

Overflow in two's complement

 In two's complement, when you exceed the maximum value of int (2,147,483,647), you "wrap around" to negative numbers:

PSY - GANGNAM STYLE (강남스타일) M/V					
officialpsy 🖾					
Subscribe 7,600,830	-2142584554				
Add to < Share ••• More	∎ 6 8,761,309 # 1,139,933				

Here is the link after Google upgraded to 64-bit integers:

Signed integers with two's complement representation

Signed integers with two's complement

Goal: write 5 in 8-bit two's complement

Steps to write a positive (or zero) number in two's complement:

- 1. Write the number in usual unsigned binary representation
- 2. Make sure that the number will "fit" in the number of bits you have
 - For positive numbers, there needs to be at least one zero in the most significant (leftmost) bit
 - > 00000101 (no problem for 5 in 8 bits)
- 3. Done!
 - > Answer: 00000101

Signed integers with two's complement

Goal: write <u>-5</u> in 8-bit two's complement

JOU

5=060001

Steps to write a negative number in two's complement:

- 1. Write the *absolute value* of the number in usual unsigned binary representation
- 2. Make sure that the number will "fit" in the number of bits you have
 - Since we are writing the absolute value, a positive number, there needs to be at least one zero in the most significant (leftmost) bit*
 - > 00000101 (no problem for 5 in 8 bits) 1
- 3.) "Flip" each bit $(0 \rightarrow 1, 1 \rightarrow 0)$
 - > 00000101, → 11111010
- 4. Add one
 - > 11111010 → 11111011

5. Done!

> Answer: 11111011

* There is one negative number whose positive number won't "fit"—more on this Friday

$$\begin{array}{c} \textcircledleft 0 \\ \charscale \\ \textcircledleft 0 \\ \charscale \\ \textcircledleft 0 \\ \charleft 0 \\$$