
Computer Systems

Cynthia Lee

C S 1 0 7

Today’s Topics

LAST TIME:

 Number representation

› Integer representation

› Signed numbers with two’s complement

THIS TIME:

 Number representation

› The integer number line for signed and unsigned

› Overflow and underflow

› Comparison, extension and truncation in signed and unsigned

› Bitwise operations and bit sets

COMING UP:

 Today is last day of topics that will be included on next week’s midterm

› Practice exams and topics list are up now

2

Reasoning about signed and
unsigned

Integer Representation (assume binary values shown are all 32 bits)

4

000…000111…111

011…111100…000

000…001
000…010

000…011

111…110
111…101

111…100

100…001

100…010

011…110

011…101

+1

+1

+1

……

Signed and unsigned numbers

At which points can overflow occur

for signed and unsigned int?
(assume binary values shown are all 32

bits)

A. Signed and unsigned can both

overflow at points X and Y

B. Signed can overflow at X,

unsigned at Y

C. Signed can overflow at Y, unsigned

at X

D. Signed can overflow at X and Y,

unsigned only at X

E. Other

5

X

Y

000…000111…111

011…111100…000

000…001
000…010

000…011

111…110
111…101

111…100

100…001

100…010

011…110

011…101

……

UNSIGNED integers (assume binary values shown are all 32 bits)

6

000…000111…111

011…111100…000

000…001
000…010

000…011

111…110
111…101

111…100

100…001

100…010

011…110

011…101

……

0≈+4billion

Discontinuity

means overflow

possible here

In
c
re

a
s
in

g
 p

o
s
itiv

e
n
u
m

b
e
rs

M
o
re

 i
n
c
re

a
s
in

g
 p

o
s
it
iv

e
n
u
m

b
e
rs

SIGNED integers (assume binary values shown are all 32 bits)

7

000…000111…111

011…111100…000

000…001
000…010

000…011

111…110
111…101

111…100

100…001

100…010

011…110

011…101

……

0-1

Discontinuity

means overflow

possible here

In
c
re

a
s
in

g
 p

o
s
itiv

e
 n

u
m

b
e
rs

N
e
g
a
ti
v
e
 n

u
m

b
e
rs

b
e
c
o
m

in
g
 l
e
s
s
 n

e
g
a
ti
v
e
 (

i.
e
.
in

c
re

a
s
in

g
)

≈+2billion
≈-2billion

+1

Comparison operators in signed and unsigned numbers

int s1, s2, s3;
unsigned int u1, u2, u3;

Are the following statements true?
(assume that variables are set to values that
place them in the spots shown)

› s3 > u3
› s1 > s3
› u1 > u3
› s1 > u3

C just needs to choose one or the other
scheme to dominate. It
chooses…drumroll…

unsigned!

So this is TRUE.

8

000…000111…111

011…111100…000

u3

s3s1

Hmmm!??!

u1
Easy: true

Easy: false

Easy: true

HOME SELF-TEST:
Comparison operators in signed and unsigned numbers

int s1, s2, s3, s4;

unsigned int u1, u2, u3, u4;

Which many of the following

statements are true? (assume that

variables are set to values that place them

in the spots shown)

› s3 > u3

› u2 > u4

› s2 > s4

› s1 > s2

› u1 > u2

› s1 > u3

9

000…000111…111

011…111100…000

u3

s3

u1

s1

u2

s2

u4

s4

Type truncation in the char/short/int/long family

int i1 = 0x8000007F; // = -2147483521

int i2 = 0x000000FF; // = 255

char s1 = i1; // = 0x7F = 127

char s2 = i2; // = 0xFF = -1

unsigned char u1 = i1; // = 0x7F = 127

unsigned char u2 = i2; // = 0xFF = 255

 Regardless of source or destination signed/unsigned type, truncation

always just truncates

 This can cause the number to change drastically in sign and value

10

Type promotion in the char/short/int/long family

char sc = 0xFF; // 0xFF = -1

unsigned char uc = 0xFF; // 0xFF = 255

int s1 = sc; // 0xFFFFFFFF = -1

int s2 = uc; // 0x000000FF = 255

unsigned int u1 = sc; // 0xFFFFFFFF = 4,294,967,295

unsigned int u2 = uc; // 0x000000FF = 255

 Promotion always happens according to the source variable’s type

› Signed: “sign extension” (copy MSB—0 or 1—to fill new space)

› Unsigned: “zero fill” (copy 0’s to fill new space)

 Note: When doing <, >, <=, >= comparison between different size types,

it will promote to the larger type

› “int < char” comparison will implicitly (1) assign char to int according

to these promotion rules, then (2) do “int < int” comparison

11

In closing

Bits As Individual Booleans
THIS IS A VERY DIFFERENT WAY OF THINKING ABOUT WHAT A

PARTICULAR SET OF 8 BITS (ONE CHAR) “MEANS”

Bitwise operators and masking

 Let’s say we want to represent font settings:

› Bold

› Italic

› Red color

› Superscript

› Underline

› Strikethrough

 Observe that a particular piece of text can be any combination of these

› Example 1: Bold Italic Red

› Example 2: Italic Red Underline

› Example 3: Bold Superscript Underline Strikethrough

Bitwise operators and masking

 Idea: Have a bool for each of these settings, store them in struct:

struct font_settings {

bool is_bold;

bool is_italic;

bool is_red;

bool is_super;

bool is_under;

bool is_strike;

};

› Example 1: Bold Italic Red

struct font_settings ex1; /* how to set up */

ex1.is_bold = ex1.is_italic = ex1.is_red = true;

ex1.is_super = ex1.is_under = ex1.is_strike = false;

if (ex1.is_bold) { … /* how to use */

This works and is easy

to read, but each bool

is one byte—7 of each

8 bits not being used.

Wastes bigly. Sad!

Bitwise operators and masking

 New idea: Have one 0/1 bit for each of these settings:

› Bold 1 = bold, 0 = not bold

› Italic 1 = italic, 0 = not italic

› Red color 1 = red, 0 = not red

› Superscript …

› Underline

› Strikethrough

 Store the collection of 6 bit settings together:

› Example 1: Bold Italic Red 111000

› Example 2: Italic Red Underline 011010

› Example 3: Bold Superscript Underline Strikethrough _____________

 We can pack these into an unsigned char (uses lower 6 of the 8 bits)

› Example 1: Bold Italic Red 00111000

Bitwise operators and masking

 Use char and hexadecimal to store font settings:

Example 1: Bold Italic Red

unsigned char ex1 = 0x38; // 0x38 = 00111000

 …But how do we use this?

 No way to “name” the bold bit by itself:

if (ex1) { … // tests if whole char != 0

if (ex1.is_bold) { … // no nameable fields in char

 Can’t access individual bits (system is byte-addressable)

 Not hopeless: we need bitwise operators

Bitwise operators and bits as
individual booleans
MOVING BEYOND THE “INT” INTERPRETATION OF BITS

Bitwise operators

 You’ve seen these categories of operators in C/C++:

› Arithmetic operators: +, -, *, /

› Comparison operators: ==, !=, <, >, <=, >=

› Logical operators: &&, ||, !

› (C++ only) Stream insertion operators: <<, >>

 Now meet a new category:

› Bitwise operators: &, |, ^, ~, >>, <<

Bitwise operators

unsigned char a = 0 0 1 1 1 1 0 0

unsigned char b = 0 1 0 1 1 0 1 0

and,

intersection
a & b

or,

union
a | b

xor,

different?
a ^ b

not ~a

shift left a << 2

shift right a >> 3

Bitwise operators and masking

 Use char and hexadecimal to store font settings:

Example 1: Bold Italic Red

unsigned char ex1 = 0x38; // 0x38 = 00111000

 How can we write a test for bold?

bool is_bold(unsigned char settings)

{

unsigned char mask = 1 << 5; // 00100000

return mask & settings != 0;

}

 “Mask” is what we call a number that we create solely for the
purpose of extracting selected bits out of a bitwise representation

› Often crafted using 1 shifted by some amount

› Writing as a hexadecimal value also acceptable (0x20)

› More complex masks can be crafted in steps with | & etc to test for
more than one condition at once

Bitwise operators and masking

 Reminder: here are our font settings, in bit order:

› Bold

› Italic

› Red color

› Superscript

› Underline

› Strikethrough

 How can we write code to turn off italics (without changing any

other settings)?

unsigned char italics_off(unsigned char settings)

{

return __________________;

}

A. ~settings

B. settings & 1 << 4

C. settings ^ 1 << 4

D. settings | ~(1 << 4)

E. settings & ~(1 << 4)

F. Something else

(to be) || !(to be), that is the question

 ! and ~ are both “not” operators—are they the same?

 In other words, is this guaranteed to always print?

int i;

scanf("%d", &i);

if (!i == ~i) printf("same this time\n");

A. Yes, always prints

B. Sometimes prints, but not always

C. No, never prints

D. You lost me at the code version of Shakespeare

