Computer Systems

Cynthia Lee

Today's Topics

LECTURE:

> Floating point!

Real Numbers and Approximation

MATH TIME!

Some preliminary observations on approximation

- We know that some non-integer numbers can be represented precisely by a finite-length decimal value
 - > $1/5_{10} = 0.2_{10}$
- ...and some can't (in base 10)
 -) П
 - > $1/3_{10} = .3333333\overline{33}_{10}$

- But this isn't consistent across different bases
 - > $1/3_{10} = 0.1_3$
 - > $1/5_{10} = 0.012012\overline{012}_3$
- And of course even with int, we needed to make choices about which integers make the cut and which don't, when we have only a limited storage space

Real number types: float, double

- float is 4 bytes = 32 bits
 - 2³² = 4,294,967,296 possible values
 - (note: obviously same number of possible values as 32-bit int)
- double is 8 bytes = 64 bits

- 2⁶⁴ = 18,446,744,073,709,551,616 possible
- This is the same number of different possible representable values as int and long, of course
 - > But floating point range goes much higher than max int:
 - > Max 32-bit int: 2³¹ 1 = 2,147,483,647
 - > Max 32-bit float: (2 2⁻²³) × 2¹²⁷ ≈ 3.402823 × 10³⁸

Real number types: float, double

- If you're deciding how to divide up a large number of possible bit patterns into numbers they can represent, there are any number of ways you cold do this
 - > What are your priorities?
 - Do you want to leave space for very big ones? Or very small ones?
 - > Do you prefer positive or negative?

The "mini-float"

 $\underline{\text{NOT}}$ a real type in C, but will show us the principles that will scale up to the actual bit sizes float and double

IEEE format, squished down to example-size "mini-float"

Sign	Exponer	Μ	lantiss	a	

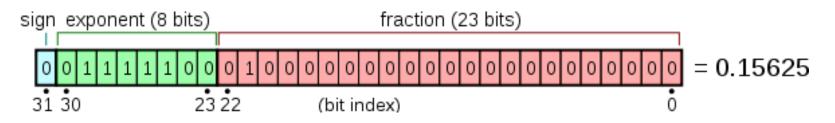
- Sign bit is 1 for negative, 0 for positive
 - > Operates completely independently, unlike 2's complement int
- The rest of the number is in something like scientific notation:

- <u>Mantissa</u> provides the significant digits of the number
 - Note: also called the coefficient or the significand
- Exponent is used to scale the number up or down to very large or very small values
- > Both exponent and mantissa are binary numbers, 4 bits and 3 bits, respectively
 - *but <u>not</u> in normal 2's complement form!*

IEEE format, squished down to example-size "mini-float"

Sign	Ехро	onent	N	lantiss	a	

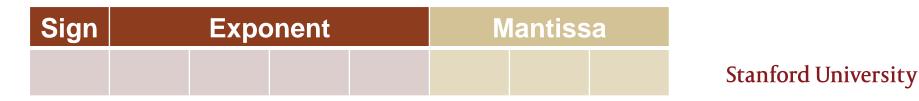
Compare to the bit distribution for 32-bit float:



Creative Commons license attribution to user Fresheneesz at https://en.wikipedia.org/wiki/Single-precision_floating-point_format#/media/File:Float_example.svg

"Mini-float": the mantissa

- A 3-bit binary number representing a number <u>after an implicit 1.</u>
 > What??
- Yes, it looks like this: 1.[mantissa digits]
- Examples:
 - > Mantissa = $100_2 \rightarrow 1.100_2$
 - = 1 + $\frac{1}{2}$ = 1.5₁₀
 - > Mantissa = $110_2 \rightarrow 1.110_2$
 - = 1 + $\frac{1}{2}$ + $\frac{1}{4}$ = 1.75₁₀



"Mini-float": the exponent

- A 4-bit binary number representing the exponent:
 - > 0000 > reserved > 0001 > -6 > 0010 > -5 > 0011 > -4 > 0100 > -3 > -2 > 0101 > 0110 > -1 > 0111 > 0 > 1 > 1000 > 1001 > 2 > 1010 > 3 > 1011 > 4 > 1100 > 5 > 1101 > 6 > 1110 > 7 > 1111 > reserved Exponent

Sign

Mantissa

Lets do an example!

Sign		Ехрс	onent	N	lantiss	a	
0	0	0	0	1	0	1	0

- This number is:
 - A. Greater than 0
 - **B.** Less than 0
 - C. Help!
- Extra credit: > 1 or < -1 or in between?</p>

Lets do an example!

+/-		Exponent				Mantissa		Value
0	0	0	0	1	0	1	0	10/8 * 2 ⁻⁶ = 10/512
0	0	0	0	1	0	1	1	11/8 * 2 ⁻⁶ = 11/512
0	0	0	0	1	1	0	0	12/8 * 2 ⁻⁶ = 12/512
0	0	0	0	1	1	0	1	13/8 * 2 ⁻⁶ = 13/512
0	0	0	0	1	1	1	0	14/8 * 2 ⁻⁶ = 14/512
0	0	0	0	1	1	1	1	15/8 * 2 ⁻⁶ = 15/512
0	0	0	1	0	0	0	0	1 * 2 ⁻⁵ = 16/512
0	0	0	1	0	0	0	1	9/8 * 2 ⁻⁶ = 18/512
-240	-240 -224 -1 0 +1 +224 +240							

Lets do an example!

+/-		Exponent				antis	sa	Value
0	0	0	1	0	0	0	0	1 * 2 ⁻⁵ = 16/512
0	0	0	1	0	0	0	1	9/8 * 2 ⁻⁶ = 18/512
0	1	1	1	0	0	1	0	10/8 * 2 ⁷ = 160
0	1	1	1	0	0	1	1	11/8 * 2 ⁷ = 176
0	1	1	1	0	1	0	0	12/8 * 2 ⁷ = 192
0	1	1	1	0	1	0	1	13/8 * 2 ⁷ = 208
0	1	1	1	0	1	1	0	14/8 * 2 ⁷ = 224
0	1	1	1	0	1	1	1	15/8 * 2 ⁷ = 240
-240	-240 -224 -1 0 +1 +224 +240							

About those reserved exponents...

DENORMALIZED AND SPECIAL CASES

Reserved exponent values: 0000 and 1111

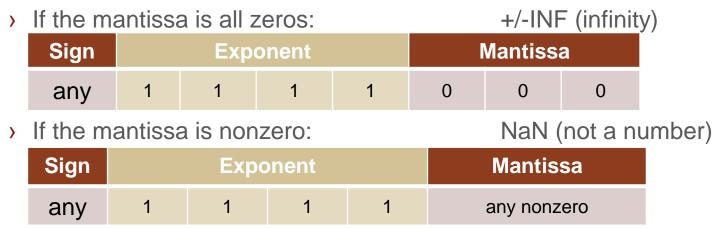
0000 exponent:

> If the mantissa is all zeros:

+/-0

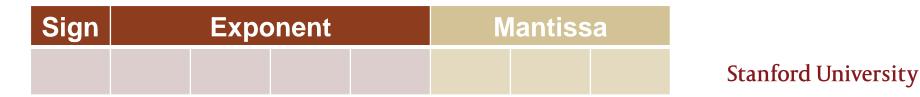
	Sign		Expo	onent		Mantiss	a	
	any	0	0	0	0	0	0	
>	If the m	antissa	a is non	zero:		denor	malized	
	Sign	Exponent					Mantiss	sa
	any	0	0	0	0		any nonzo	ero

1111 exponent:



MORE about: the mantissa

- A 3-bit binary number representing a number after an implicit 1.
 - > What??
- Yes, it looks like this: 1.[mantissa digits]
- Examples:
 - > Mantissa = $100_2 \rightarrow 1.100_2$
 - = 1 + $\frac{1}{2}$ = 1.5₁₀
 - > Mantissa = $110_2 \rightarrow 1.110_2$
 - = 1 + $\frac{1}{2}$ + $\frac{1}{4}$ = 1.75₁₀
- If the exponent is all zeros, then there is no implicit leading 1
 - > The exponent is implicitly smallest possible exponent (2⁻⁶ for mini-float)
 - This allows us to eke out a few numbers that are even (closer to zero) than would otherwise be possible
 - > Called "denormalized" or "denorm" floats



Comparing float and int

ADVANTAGES AND DISADVANTAGES

Comparing float and int

- 32-bit integer (type **int**):
 - > -2,147,483,648 to 2147483647
 - > Every integer in that range can be represented
- 64-bit integer (type **long**):
 - > -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807
 - (Even Psy will have a hard time overflowing this!)
- 32-bit floating point (type **float**):
 - > ~1.7 x10⁻³⁸ to ~3.4 x10³⁸
 - Not all numbers in the range can be represented (obviously uncountable)
 - Not even all integers in the range can be represented!
 - Gaps can get quite large!! (larger the exponent, larger the gap between successive mantissa values)
- 64-bit floating point (type **double**):
 - > ~9 x10⁻³⁰⁷ to ~2 x10³⁰⁸

Doing arithmetic in float

FUN TIMES

Adding two mini-floats

- Your bank account balance on your 12th birthday was \$128.00
- Your bank stores this amount as a mini-float:

 Each week of your childhood, starting at age 12, you deposited your weekly allowance of \$8:

Sign	Exponent	Mantissa

What was your account balance on the day you turned 18?

- A. About \$10000
- **B**. About \$5000
- C. About \$2500
- D. About \$100
- E. Other

Doing arithmetic in float

FUN TIMES

Adding two mini-floats

- Your bank account balance on your 12th birthday was \$128.00
- Your bank stores this amount as a mini-float:

Sign	Exp	onent	M	antissa

 Each week, starting at age 12, you deposited your weekly allowance of \$14:

Sign	Exponent	Mantissa

What was your account balance on the day you turned 18?

- A. About \$10000
- **B**. About \$5000
- C. About \$2500
- D. About \$100
- E. Other