
This document contains the questions and solutions to the midterm given in Fall 2017. The class
was taught by Julie Zelenski & Chris Gregg. This was an 80-minute exam.

Midterm questions

Problem 1: Bits, bytes, and numbers
Consider the mystery function. The marked line (Line 5) does most of the work of the function.

int	mystery(unsigned	int	v)		
{	
				int	c;		
				for	(c	=	0;	v;	c++)	{	
								v	&=	v	-	1;	 //	Line	5	
				}	
				return	c;	
}

1a) Identify the change in bit pattern between a non-zero unsigned value number and its numeric

predecessor (number	-	1).

1b) How does the bit pattern of v change after executing line 5?

1c) In terms of the bit pattern for v, what value is returned by the call mystery(v)?

1d) The following statements appear in a C program running on our myth computers.

					int	x	=			/*	initialization	here	*/	
					bool	result	=	(x	>	0)	||	(x-1	<	0);	
	
Either argue that result is true for all values of x or give a value of x for which result is false.
Is result always true? Yes / No

If Yes, explain:

If No, the following initialization of x will make result false:

Problem 2: C-strings
2a) The function strip_leading(char	*input,	const	char	*discard) removes the leading

characters from the string input that occur in the string discard. Here are some examples:

char	*word	=	strdup("details");	

strip_leading(word,	"s") no change to word
strip_leading(word,	"due") changes word to "tails"
strip_leading(word,	word) changes word to ""

Requirements:

 Page 2 of 4

• Your function should not allocate, deallocate, or resize any memory. Instead it should
destructively modify the input string. If the input string loses some characters, its memory
will be over-allocated at the end; your implementation should leave the memory as-is.

• Re-implementing functionality that is available in the standard library will result in loss of
credit. Hint: your code should not have any explicit loops, instead call the library functions!

• The string-copying routines (e.g. strcpy/strcat) cannot be used when the source and
destination overlap. Hint: remember what alternatives you have in the standard library!

	
		void	strip_leading(char	*input,	const	char	*discard)	
		{	

2b) Your colleague wants to add this final line to strip_leading to fix the over-allocation issue:

input	=	realloc(input,	strlen(input)+1);	
	

Not only is this call not likely to shrink the memory, it causes two distinct memory errors.
What are they?

Problem 3: Pointers and generics
3a) The generic find_min searches an array for its smallest element according to a client-supplied

callback function. The function arguments are the array base address, the count of elements, the
size of each element in bytes and a comparison function. The function returns a pointer to the
minimum array element. As an example, find_min on the array {3.7,	9.4,	1.1,	-6.2} with
ordinary float comparison returns a pointer to the last element in the array. Fill in each of the
three blank lines with the necessary expression so that the function works correctly.

void	*find_min(void	*base,	size_t	nelems,	size_t	width,		
															int	(*cmp)(const	void	*,	const	void	*))	
{	
				assert(nelems	>	0);				//	error	if	called	on	empty	array	

				void	*min	=	__;	 //	Line	1	
				for	(size_t	i	=	1;	i	<	nelems;	i++)	{	

								void	*ith	=	__;	 //	Line	2	

								if	(___)	 //	Line	3	
														min	=	ith;	
				}	
				return	min;	
}	

3b) Complete the program started below to use find_min to find the command-line argument with

the minimum first character ("minimum" means smallest ASCII value) and print that character.
For example, if invoked as ./program	red	green	blue, the program prints 'b'. You must fill in
the blank line in main with a call to find_min and can assume that this function works correctly.

 Page 3 of 4

You will also need to implement the comparison callback function. Hint: remember that the
command-line arguments start at index 1 in the argv array.
	
int	cmp_first(const	void	*p,	const	void	*q)	
{	
	
}	
	
	
int	main(int	argc,	char	*argv[])	

{	

				char	ch	=	__;	
				printf("Min	first	char	of	my	arguments	is	%c\n",	ch);	
				return	0;	
}	
	
	

3c) The selection sort algorithm works by repeatedly selecting a minimum element and swapping it
into position. On the first iteration, it finds the minimum array element and swaps it with the
first element. The second iteration finds the minimum element of the subarray starting at the
second position and swaps it into the second position. This process repeats on shorter and shorter
subarrays until the entire array is sorted. Implement the selection_sort function below to
perform the selection sort algorithm on a generic array. You will need to call find_min and can
assume that the function works correctly.

void	selection_sort(void	*base,	size_t	nelems,	size_t	width,		
																				int	(*cmp)(const	void	*,	const	void	*))	
{	
				for	(size_t	i	=	0;	i	<	nelems-1;	i++)	{

	 	

 Page 4 of 4

Solutions

1a) The least significant 1 bit is now a 0 and any bits further to right are all 1s.
1b) The least significant 1 bit is changed to a 0.
1c) The count of 1 bits in v.
1d) No. If x = INT_MIN, result is false.

2) void	strip_leading(char	*input,	const	char	*discard)

{	
				size_t	n	=	strspn(input,	discard);	
				memmove(input,	input+n,	strlen(input)	-	n	+	1);	
}	

There is no guarantee that the input string is heap-allocated, attempting to realloc non-heap
memory has unpredictable results. The input pointer is not passed by reference, so re-
assigning does not have a persistent effect. The caller's original pointer is unchanged.

3) void	*find_min(void	*base,	size_t	nelems,	size_t	width,	
															int	(*cmp)(const	void	*,	const	void	*))	
{	
				assert(nelems	>	0);				//	error	if	called	on	empty	array	
				void	*min	=		base;							
				for	(size_t	i	=	1;	i	<	nelems;	i++)	{	
								void	*ith	=	(char	*)base	+	i*width;	
								if	(cmp(ith,	min)	<	0)	
														min	=	ith;	
				}	
				return	min;	
}	
	
int	cmp_first(const	void	*p,	const	void	*q)	
{	

	 	return	**(const	char	**)p	-	**(const	char	**)q;	
}	

	
char	ch	=	**(char	**)find_min(argv+1,	argc-1,	sizeof(*argv),	cmp_first);	
			
void	selection_sort(void	*base,	size_t	nelems,	size_t	width,		
																				int	(*cmp)(const	void	*,	const	void	*))	
{	
				for	(size_t	i	=	0;	i	<	nelems-1;	i++)	{	

					 void	*ith	=	(char	*)base	+	i*width;	
					 void	*min	=	find_min(ith,	nelems-i,	width,	cmp);	
					 char	tmp[width];	
					 memcpy(tmp,	ith,	width);	
					 memcpy(ith,	min,	width);	
					 memcpy(min,	tmp,	width);	
						}	
			}	

