
This document contains the questions and solutions to the CS107 midterm given in Spring 2016
by instructors Julie Zelenski and Michael Chang. This was an 80-minute exam.

Midterm questions

Problem 1: C-strings
The Pascal language uses a different memory layout for strings than C. The first byte of a Pascal
string is the number of characters and is followed by the sequence of characters. It contains no
terminating null char. The char array below is a Pascal string equal to the C-string "exemplified":

11	 'e'	 'x'	 'e'	 'm'	 'p'	 'l'	 'i'	 'f'	 'i'	 'e'	 'd'	

a) Write the function equal to compare a Pascal string and C-string for string equality. The
function arguments are pstr, a char array representing a Pascal string, and cstr, an ordinary C-
string. The return value should be true if the two strings are equal, false otherwise.
	

		bool	equal(const	unsigned	char	pstr[],	const	char	*cstr)	
		{	

b) Given this design, what is the maximum allowable length for a Pascal string?

Problem 2: Implementation of C generics
A stack is a LIFO (last-in-first-out) collection. The push operation adds an element to the top of
the stack, peek accesses the topmost element, and pop removes it. The CStack is a generic
implementation that can store elements of any type. It uses a linked list to store elements.

For example, a CStack is created to store elements of sizeof(int). After pushing three values
(99, 42, 157), its internal memory is diagrammed below. The last value pushed (157) is topmost.

Review the CStack struct definition and the cstack_create and cstack_peek	functions below:

typedef	struct	CStackImplementation	{	
				void	*top;	
				size_t	elemsz;	
}	CStack;	

	
CStack	*cstack_create(size_t	elemsz)	
{	
				CStack	*cs	=	malloc(sizeof(CStack));	
				cs->elemsz	=	elemsz;	
				cs->top	=	NULL;	
				return	cs;	
}	
	

top

elemsz

• 157 • 42 • 99
CStack

 Page 2 of 5

//	Peek	accesses	the	topmost	element	of	stack	without	removing	it.	
//	Returns	pointer	to	memory	location	where	element	value	is	stored;	
//	returns	NULL	if	stack	is	empty	
void	*cstack_peek(CStack	*cs)		
{	
	 return	cs->top;	
}	

You are to implement the operations cstack_push and cstack_multipush. Your functions must
work with the code above unmodified. 	

	
A few important notes:

• The cell layout must be exactly as diagrammed above. A cell stores the element value
followed by the pointer to the next cell. If storing elements of type char, elemsz will be 1
byte and each cell will occupy 9 bytes.

• The cstack_multipush operation should layer on cstack_push, not re-implement it.

	
/*	Function:	cstack_push(cs,	&val)	
	*	-------------------------------	
	*	Adds	a	new	element	to	the	top	of	the	stack.	addr	is	expected	to	be	a	valid	pointer.	
	*	The	element’s	value	is	copied	from	the	memory	pointed	to	by	addr.		
	*/	
void	cstack_push	(CStack	*cs,	const	void	*addr)	
{	

/*	Function:	cstack_multipush(cs,	arr,	n)	
	*	--------------------------------------	
	*	Pushes	an	array	of	elements	onto	stack.	The	two	arguments	are	arr,	the	array’s		
	*	base	address,	and	nelems,	the	count	of	elements	in	arr.	Each	array	element	is		
	*	cs->elemsz	bytes.	Elements	are	pushed	to	stack	in	order	they	appear	in	arr;	the	
	*	last	element	in	array	ends	up	topmost	on	the	stack.	
	*/	
void	cstack_multipush	(CStack	*cs,	const	void	*arr,	int	nelems)	
{	
	
	
Problem 3: Generic client 	
Assume CStack is correctly implemented as documented in the previous problem. The sample
client program below demonstrates correct use of CStack to store integers.

					
int	main(void)	
{	
				int	arr[3]	=	{99,	42,	157};	
				CStack	*cs	=	cstack_create(sizeof(int));	
					
				cstack_multipush(cs,	arr,	3);	
				printf("%d\n",	*(int	*)cstack_peek(cs));	
				return	0;	
}	

 Page 3 of 5

The program prints the value 157. Below is a diagram that shows the state of memory at the time
of the return statement.

	

On the following page is another client program that exercises the CStack. Not all of the calls are
sensible, but the program compiles cleanly and successfully runs to completion. You are to trace
its execution, describe what it prints, and draw a memory diagram. Your diagram should show
all allocated memory and its contents, just as modeled in the sample diagram above.

A few guidelines for memory diagrams:
 • Show all allocated memory, both stack and heap.
 • Draw pointers as arrows. Represent a NULL pointer with a diagonal slash.
 • Use	? to mark where contents of memory are uninitialized.

int	main(void)	
{	
				char	buf[16];	
				char	*arr[2]	=	{	NULL,	NULL	};	
				CStack	*cs	=	cstack_create(sizeof(char	*));	
	 	 	 						//	initial	diagram	
				strcpy(buf,	"binky	winky");	
				arr[0]	=	buf;	
				cstack_multipush(cs,	arr,	2);	
				*arr	+=	6;	
				arr[1]	=	strdup(&buf[2]);	
				for	(int	i	=	0;	i	<	2;	i++)	
								cstack_push(cs,	arr[i]);	
				printf("%s\n",	(char	*)cstack_peek(cs));					
				return	0;																																		//	complete	diagram	at	this	point	
}	

a) You run the program several times and each time its output is slightly different. Explain why.

Stack

Heap

top

elemsz 4

cs •

•

arr 99 42 157

157 • 42 • 99
CStack

 Page 4 of 5

b) The diagram started below shows the state of memory after the variable declarations.
Complete the diagram to show all allocated memory and its contents at return.

Problem 4: Bits, bytes, and numbers
Match each bitwise expression below on the left to an equivalent C expression from the choices
on the right. Assume the variable x is a 32-bit signed integer using two's complement
representation. INT_MAX and INT_MIN are the maximum and minimum representable signed
integers. Shifts on signed values are arithmetic, not logical, shifts.

 x + INT_MAX + INT_MIN

 (x ^ -1) + 1

 ((x >> 31) & x)

A. (x < 0) == (x % 2)
B. 1 - x
C. x
D. 0
E. x + 1
F. INT_MAX
G. x - 1
H. (x < 0) ? INT_MIN : 0
I. ~x
J. INT_MIN

K. (x < 0) ? x : 0
L. -x

M. (x < 0) ? (x % 2) : 0

N. x % 2

Stack

Heap
top

elemsz

cs •

buf

arr

 Page 5 of 5

Solutions

Problem 1:

bool	equal(const	unsigned	char	pstr[],	const	char	*cstr)
{	
			return	strlen(cstr)	==	pstr[0]	&&	strncmp(pstr+1,	cstr,	pstr[0])	==	0;	
}	

UCHAR_MAX	=	255

Problem 2:
	
void	cstack_push	(CStack	*cs,	const	void	*addr)	
{	
				void	*blob	=	malloc(cs->elemsz	+	sizeof(void	*));	
				memcpy(blob,	addr,	cs->elemsz);	
				*(void	**)((char	*)blob	+	cs->elemsz)	=	cs->top;			//	both	casts	needed!	
				cs->top	=	blob;	
}	
	
void	cstack_multipush	(CStack	*cs,	const	void	*arr,	int	nelems)	
{	
				for	(int	i	=	0;	i	<	nelems;	i++)	
								cstack_push(cs,	(char*)arr	+	i*cs->elemsz);	
}	
	
Problem 3:
Prints "nky	 wink" followed by zero or more garbage characters. printf is reading from a char
array that does not contain a null terminator which causes it to read into neighboring bytes and
print those, stopping at first zero byte. These extra characters will vary from run to run as their
value depends on the address where the next cell is located in the heap.

Problem 4:
G L K

Stack

Heap
top

elemsz 8

cs •

buf b i n k y w i n k y \0 ? ? ? ?

arr

• •

•

•

•

n k y w i n k

w i n k y 0 ? ?

n k y w i n k y \0

