Function examples

int dinky(int x) 000000000040056b <dinky>:
{ 40056b: lea 0x2(%rdi), %eax
) return x + 2; 40056e: retq
000000000040056f <binky>:
int binky(int x, int y) 40056f: mov %edi , %eax
{ 400571: imul %esi,%eax
int result = x * y; 400574: retq
return result;
} 0000000000400575 <oscar>:
400575: mov $0x7,%esi
int oscar(void) 40057a: mov $0x5, %edi
{ 40057f: callq 40056f <binky>
int a = binky(5, 7); 400584: mov %eax,%edi.
a = dinky(a); 400586: callq 40056b <dinky>
return a + 9; 40058b: add $0x9, %eax

} 40058e: retq

Instructions for runtime stack

< Add/remove values to stack

push src

Decrement %rsp to make space, store src value at new top of stack
pop dst

Copy topmost value from stack into dst register; increment %rsp

< Gall and return

callqg <fn>
Transfer control to named function
push %rip onto stack (this becomes resume address), set %rip to fn address

retq
pop %rip (resume address should be topmost on stack)

Register ownership

<& ONE set of registers

One %rax that is shared by all
Need a set of conventions to ensure functions don’t trash other’s data
Registers divided into callee-owned and caller-owned

< Gallee-owned
Caller cedes these registers at time of call, cannot assume value will be preserved across
call to callee

Callee has free reign over these, can overwrite with impunity
Callee-owned: registers for 6 arguments, return value, %r10, %r11

< Galler-owned

Caller retains ownership, expects value to be same after call as it was before call

Callee can "borrow" these from caller but must write down saved value and restore it
before returning to caller
Caller-owned: all the rest (%rbx, %rbp, %r12-%r15)

Using stack for locals/scratch

< Why copy registers?

Caller about to make a call, must cede callee-owned registers

If value in a callee-owned register that will be needed after the call, must make a copy before
making the call

Callee needs to "borrow" caller-owned register
Must first copy value, later restore the value from saved copy before returning

< Where to copy registers?
push to save value to stack, pop to restore

< Local variables

Stored in registers whenever possible

What if too many?
Compiler can re-use register when live ranges don’t overlap
Spill to stack (push/pop) as needed

What can’t be stored in register?

Variable too large (struct, array)
&var used requires that var be stored in memory

Wrap up on stack

< Oddball cases

If more than 6 arguments, extras passed on stack
If parameter or return value does not fit in 64-bit register (struct?), written to stack

¢ Understanding stack means you know...

How recursion is implemented

Why local variables allocated on stack are cheap

Why initial contents of locals is garbage, how can change with context of call
Consequence of function returning address into deallocated stack frame

< Stack vulnerability

Resume address is stored in stack frame
If access to neighbor overruns (such as access off end of array), what is consequence?

If resume address is trashed, what happens?

Compiler code generation

<& Gonstraints

Execution must be faithful to language semantics
Order of operations, precedence, etc.

Must obey conventions for interoperability
Function call/return, use of registers

Instructions must be legal, meet ISA contract
l.e. lea scale must be 1,2, 4, 8

< Latitude

Can re-order operations that don’t have dependencies
Can substitute equivalent sequence
mov $0, %eax

Xor %eax, %eax
and $0, %eax

C spec liberates compiler in terms of undefined behavior
Uninitialized variable, missing return, integer overflow, dereference NULL,...

Compiler people LOVE optimization

-00 // faithful/literal match to C, best for debugging
-0g // streamlined, but debug-friendly
-02 // apply all acceptable optimizations

<& Gompiler knows the score when it comes to the hardware
Register allocation
Instruction choice
Alignment

< Transformations should be legal, equivalent
Compiler has only knowledge of CT, not RT
Operates conservatively
"Do no harm"

Constant folding

unsigned int CF(unsigned int val)

{
unsigned int ones = ~QU/UCHAR_MAX;
unsigned int highs = ones << (CHAR_BIT - 1);
return (val - ones) & highs;

}

0000000000400836 <CF>:
push %rbp

mov %rsp,%rbp 0000000000400810 <CF>:

mov ?gd%é;g%f(%gb?% ot lea -0x1010101(%rdi), %rax
o oty) » and $0x80808080, %eax

shl $0x7,%rax retq

mov %rax,-0x8(%rbp)

mov -0x18(%rbp),%rax

sub -0x10(%rbp), %rax

and -0x8(%rbp), %rax

pop %rbp

retq

How does knowing this influence how you write the code in the first place?

Common subexpression elimination

int CSE(int num, int val)

{
int a = (val + 50);
int b = num*a - (50 + val);
return (val + (100/2)) + b;
}

0000000000400820 <CSE>:
400820: lea 0x32(%rsi),%eax
400823: 1imul %edi,%eax
400826: retq

Also can apply to repeated address calculations!

Strength reduction

int SR(int val)

{
unsigned int b = 5#*val;
int ¢ = b / (1 << val);
return (b + ¢) % 2;

}

0000000000400830 <SR>:
lea (%rdi,%rdi,4),%eax

mov %edi , %ecx
mov %eax , sedx
shr %cl , %edx

add %edx , %eax
and $0x1, %eax
retq

Cost-per-instruction varies, not all created equal

Code motion

int CM(int val)

{
int sum = 0;
do {
sum += 6 + 14*val;
} while (sum < (9/val));
return sum;

} 0000000000400840 <CM>:
mov $0x9, %eax
xor %»ecx, %ecx
cltd

idiv %edi
imul $0xe,%edi,%esi
add $0x6,%esi

add %esi,%ecx

cmp %»eax, %ecx

jl 400850 <CM+0x10>
mov %»ecx, keax

retq

Why is beneficial to move work outside loop body?

Dead code elimination

int DC(int a, int b)
{
if (a <b & a > b) // can never be true!
printf("The end of the world is near!");

int result;
for (int i = 0; i < 9999; i++)
result *= i;

if (a == b)
at+; // if/else obviously same

else . 0000000000400860 . <DC>:
’ lea Ox1.(%rdi),%eax
retq

if (a == 0)
return 0; // if/else same, not so obvious
else

return a;

int main(int argc, char *argv[])

{

int x = rand();

x += CF(x);
x += CSE(x, 107);
X += SR(107);
X += CM(107);
x += DC(x, 107); 0000000000400430 <main>:
return x; sub $0x8,%rsp
xor %eax, %heax
callq 400410 <rand@plt>
lea -0x1010101 (%rax), %edx

add $0x8,%rsp

and $0x80808080, %edx

add %edx , %eax

imul $0x9e, %eax, %eax

lea Oxbc3(%rax,%rax,1), %eax
retq

Decomposition is good! Have your cake and eat it, too!

Rules of thumb

< Is there even a problem?
Measure! If ok at expected scale, you’re done!

< KISS (keep it simple stupid)
If low-traffic/small input: simplest code, easy to understand and debug
(optimize use of programmer's time!)

< Choose correct algorithm/design
Optimization reduces constants, doesn’t change Big-0 or fix bad design

¢ Let gce do its magic!
No pre-optimize, don’t get in compiler’s way
Read generated assembly to know what you are getting

< Only then take action of your own
Measure again, attend only to actual bottleneck

Optimization reality check

“We should forget about small efficiencies, say about 97% of the
time: premature optimization is the root of all evil. ”
— Donald Knuth

“More computing sins are committed in the name of efficiency
(without necessarily achieving it) than for any other single reason
- including blind stupidity.”

— W.A. Wulf

“Bottlenecks occur in surprising places, so don't try to second
guess and put in a speed hack until you have proven that's where
the bottleneck is.”

— Rob Pike

