
NXApp, Volume 1, Issue 3. Summer 1994. Copyright ª1994 by NeXT Computer, Inc. All Rights Reserved.

Core Dump

written by Julie Zelenski

GDB'S GREATEST HITS
Lurking beneath its old-style command interface, gdb has a lot to offer the developer. It's a great tool
for observing a program in action, controlling the flow of execution, and changing behavior at run
time. You can read the NEXTSTEP documentation to learn more about any of its features, and gdb
itself has a comprehensive internal help system. But both of these information sources are organized
as reference material—they're perfect for looking up the details of commands as you need them, but
somewhat less helpful for learning new commands or finding your way around in the infrastructure.

For this issue's column, rather than focusing on gdb commands themselves I'd like to highlight the
more useful support features of gdb that make debugging a more pleasant and manageable task.
These are some of my techniques for making the most of gdb and its support features. Also included
are the gdb questions most frequently asked and bugs most frequently noticed.

Never ever leave gdb
My absolute favorite gdb support feature is the ability to recompile a project without leaving gdb, by
simply typing make. After you remake your project, the next run causes gdb to notice the executable
has changed and reload the symbol table information. This saves the startup time that comes from
entering and exiting gdb. More importantly, it also prevents you from losing the details of the current
debugging session, such as all of your breakpoint settings and command and value histories.

(gdb) make
cc -g -O -Wall -c MyApplication.m -o ./obj/MyApplication.o

... output from compile & link

(gdb) r
'/tmp/Test.app/Test' has changed, rereading symbols.
Reading symbols from /tmp/Test.app/Test...done.
Starting program: /tmp/Test.app/Test

For more general shell needs, you can execute the shell commands within gdb by prefacing the

desired shell command with the word shell.

(gdb) shell ls -l My*.[hm]
-rw-rw-r-- 1 juliez 125 May 10 17:18 MyApplication.h
-rw-rw-r-- 1 juliez 254 May 10 17:32 MyApplication.m

Less typing is always better
gdb's command-line reader is similar to that of csh in supporting Emacs-style command-line editing
and a history mechanism with substitution. The left and right arrow keys move the cursor along the
command line, and the basic Emacs commands are available to edit the text. If you already have
Emacs command sequences wired into your fingers, this is great news. If you'd like to learn a few
commands, refer to the gdb chapter of the NEXTSTEP Developer Tools book.

gdb tells you that “command name abbreviations are allowed if unambiguous,” but that isn't quite
accurate. Most certainly, you can use any unambiguous prefix of a command: For example, you can
distinguish display from other commands that begin with dis in just four letters, or type the three
letters bre to uniquely identify break. But some ambiguous abbreviations are assigned to the most
commonly used commands. For example, the very useful commands break, delete, run, continue,
step, next, and print can be shortened to just the first letter. Save your poor overworked fingers a bit
with these shortcuts. (Nevertheless, and contrary to what you might expect, longer ambiguous
versions of these prefixes like co and de are not accorded the same special status.

By default, gdb keeps a buffer of the last 256 commands you've run, each identified by a number.
Ask gdb to show commands to see the last 10 commands you issued. At any time, you can repeat the
last command verbatim by simply pressing Return at the command prompt. You can also use the up
and down arrow keys to scroll up and down through the list of commands in your history, to choose
one to edit or execute again.

Another useful feature is that a wide range of history substitutions is available, so you can perform
substitutions on previous commands and reexecute them. This makes it possible to repeat a command,
execute the same command with different arguments or a different command with the same
arguments, and fix typos in previous commands. See the csh UNIXí manual page for the complete
story on history substitutions. The most useful one to mention is using !br to retrieve the last
command you executed that began with br. By default, history substitution is disabled, so you must
set history expansion on to enable it.

The command history usually lists only the commands you have issued in the current session.
However, you can enable saving across sessions by asking gdb to set history save on. At the end of

your session, gdb saves your command history to the file .gdb_history in the current directory; the
next time you start up gdb in that directory, that file is read to reestablish your history.

Value history, printing, and convenience variables
gdb also maintains a value history for your session. This means that every expression you evaluate
using the print command is assigned a value number in the history, like this:

(gdb) p self
$7 = (struct Application *) 0xbb5e4

You can refer to this value as $7 and use it in future expressions:

(gdb) p (char *)[$7 appName]
$8 = 0xb80cc "FunWithGDB"

Once a value is entered into the history it doesn't change: The value is stored as $7, not the expression
that generated it. This means that $7 doesn't change to hold the new value of self when your program
enters a different scope.

Also, at any time, $ refers to the last value in the history and $$ to the next-to-last value.

The output command has the same semantics as the print command, but doesn't add the result to the
value history and, for some unknown reason, doesn't end the line with a newline. You can use this
difference to avoid cluttering the value history with unimportant results. For more sophisticated
printing needs, gdb provides a printf command similar to the C version that provides for formatted
output. Like output, the results from printf are not entered into the value history.

One other handy printing feature added for Objective-C is the print-object command, which sends
its argument the printForDebugger: method. The default implementation of this method, inherited
from the Object class, simply prints out the class name and hexadecimal address of the object:

(gdb) po NXApp
<Application: 0xbb5e4>

However, you can override this method in your classes to provide more useful data about a given
object at run time for debugging purposes. Compared to dumping the contents of the underlying
struct, an implementation of printForDebugger: can print out just the information that is helpful and
use a more readable format for presentation. (And in case you missed it, the example above also

shows that you can abbreviate the command print-object to po!)

Any name that begins with a $ can be used as the name of a gdb convenience variable. These
variables are implicitly typed and created at first reference. Use print to get the value of a
convenience variable and the set command to set or change the value. You can set the value to any
valid C or Objective C expression, including dynamically called methods or functions:

(gdb) p $list = [[List alloc] initCount:10]
$24 = 793052
(gdb) p $num = 1230 % 4
$25 = 2

All registers have convenience variables associated with them. The info registers command dumps
the contents of all registers so you can see the names associated with each register. The register
convenience variables most often used are $fp, which holds the frame pointer, $sp for the stack
pointer, and $pc for the program counter.

Creating your own commands
As you learn more gdb features, you may want to create shorthand aliases for commands or macros
of common command sequences. The define command allows you to choose a name to be associated
with a command or sequence of commands. These user-defined commands become fully integrated in
gdb: They show up in Escape-completion lists of prefix matches, you need type only enough of the
name to distinguish it from other commands, and the commands are listed in gdb's help system. You
can even use the document command to enter documentation for your new addition; then this
documentation is provided when you ask for help about the command.

(gdb) define mc
Type commands for definition of "mc".
End with a line saying just "end".
display NXMallocCheck()
end
(gdb) document mc
Type documentation for "mc".
End with a line saying just "end".
Turn on auto-display of call to NXMallocCheck to watch for heap corruption
end
(gdb) help mc
Turn on auto-display of call to NXMallocCheck to watch for heap corruption

One current deficiency of user-defined commands is that they don't take arguments. A somewhat
convoluted way to get around this is to have the sequence of commands depend on the value of a
convenience variable that you set prior to executing the command. This allows you to fudge a form
of limited parameter passing.

Preferences
There are many gdb preferences that control editing, history, printing, and other behavior in the gdb
environment. To see the full list of preferences available along with their current settings, use the
info set command:

(gdb) info set
confirm: Whether to confirm potentially dangerous operations is on.
prompt: Gdb's prompt is "(gdb) ".
editing: Editing of command lines as they are typed is on.
verbose: Verbose printing of informational messages is on.
autoload-breakpoints: Automatic resetting of breakpoints in dynamic code is on.
...

Most of the default settings are the values you would want: Pretty printing is turned on for arrays and
structures, command-line editing is enabled, and so on. Some command history preferences that you
might want to change are history size, history save, and history expansion, which
respectively control the size of the history buffer, whether history is saved across sessions, and
whether history substitutions are enabled.

Another preference setting you may want to change is the limit for print elements. When you
print an array or string using the print command, gdb prints elements only up to the limit specified
by this preference. By default the limit is set to 200. You can raise or lower this as desired, or
completely remove the limit by setting print elements to 0.

Initialization files
With your newfound knowledge of preference settings and user-defined commands, you may find
you'd like to initialize your gdb environment on startup. A gdb initialization file, or .gdbinit
 file, consists of gdb commands as they would be typed to the command reader. When gdb starts up,
it reads the commands from the file .gdbinit in your home directory, then the .gdbinit file
from the current project directory, and finally from the system .gdbinit file in /usr/lib.

Your personal .gdbinit file allows you to establish your desired preference settings and define
all-purpose commands. The project .gdbinit file is a good place to add dir path inclusions for

subprojects and define any project-specific commands.

The system .gdbinit file is not writable by an unprivileged user, but you can read it. If you do, you'll
see that commands like showps and shownops are user-defined commands that call
functions from the Display PostScriptí client library to turn tracing of PostScriptí output on and off.
Also, the flush command is defined as an NXPing-type call to synchronize the display with
the PostScript commands that have been initiated. And two lesser-known commands defined in the
system .gdbinit file, traceevents and tracenoevents, enable and disable the printing of debugging
information for each event received from the window server.

Two gdb commands that are not user-defined but are convenient covers for functions are start-
profile and stop-profile. Based on the monstartup and monitor function calls, these gdb commands
allow you to selectively enable and disable profiling during the execution of an
application. They allow you to dynamically determine which areas of the code you would like to
profile and to dump each set of profiling statistics to its own separate file.

THERE'S ALWAYS MORE
Did I leave out your favorite gdb trick? Don't keep it a secret—drop me a line and let me know what
it is!

Julie Zelenski is a member of the Developer Support Team, where she fields questions on many NEXTSTEP development
topics. She loves to open her mailbox to find debugging tips and techniques to be shared with the community, so send
them to her at julie@next.com!

Special thanks to Daniel Fish for his help with this article.

COMMONLY ASKED QUESTIONS ABOUT GDB

How can I suspend a program to allow time to attach to it?

The attach command allows you to hook up with and debug an already-running process. Say you need to
explore misbehavior that surfaces only when your app is launched from the workspace, such as a problem
handling the app:openFile: message. But you have a race condition between launching the app and
getting gdb to attach before trouble starts.

You can send your program a stop signal to suspend execution, to give you time to get to the debugger

and attach. For the app:openFile: case, edit main() in your program and send this signal as the first
instruction:

kill(getpid(),SIGSTOP); // like sending Ctrl-Z to your program, suspends it

This indefinitely suspends execution of the app. Once you attach in gdb, you can use continue to go on
from there.

Why do variables seem to disappear in gdb?

To get complete information and better gdb performance while debugging, you should compile your
program with the -g option or make the Debug target in Project Builder. However, it's possible to use gdb
on nondebug versions of your application, and even on programs that have been compiled with
optimization—that is, with cc -O. This is helpful if a bug surfaces only in the optimized version, such as one
of those evil memory smashers that behaves nondeterministically.

However, debugging optimized code sometimes gives surprising results. Control flow may change due to
loop invariant statements being moved out of a loop body or common subexpressions being eliminated.
The debugger may be unable to set or print the value of a given variable because it doesn't have the
information necessary to find it. Variables may be moved into registers and two or more variables may
share the same register when their live ranges don't overlap. Stack variables that never have their address
taken and are used only across a very few instructions can “disappear” without a trace. You ask gdb to print
such a variable and even though the source clearly shows it is in scope, gdb replies:

(gdb) print num
No symbol "num" in current context.

In this case, the info locals and info args commands will also report there is no record of the variable. No
help there.

What to do? To ensure that a variable be available in the debugger even after optimization, declare the
variable volatile.

What is this error message about “privileges disabled”?

One unfortunate interaction between gdb and setuid program execution surfaces when you attempt to
debug a program that is setuid or forks setuid child processes. Within gdb, execution of setuid processes is
not allowed. gdb will have trouble with an app that is setuid or one that attempts to fork a setuid program
such as sendmail as a child process using system() or its relatives like popen() and execl() . If you try to
debug a program like this, you'll get the error message “sh: privileges disabled because of outstanding IPC
access to task” and the program or child process won't execute.

The technical explanation has to do with privileges and exception ports. When gdb is debugging a
process, it owns the exception ports of that process. When that process forks a child process, gdb would
own the exception ports of that child process as well. But, for security the kernel disallows gdb from owning
the exceptions ports of a child process that is setuid. When you attempt this, the kernel generates the

privileges disabled error message and the system() call fails.—JZ

