
1
This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Marty Stepp, Cynthia Lee, Chris Gregg, and others.

CS107, Lecture 1
Welcome to CS107!

reading:
General Information handout

Bryant & O’Hallaron, Ch. 1

2

Plan For Today
• Introduction
• CS107 Course Policies
• Unix and the Command Line
• Getting Started With C

3

Plan For Today
• Introduction
• CS107 Course Policies
• Unix and the Command Line
• Getting Started With C

4

What is CS107?
Computer Organization and Systems
• How languages like C++ and Java

represent data under the hood
• How programming structures are

encoded in bits and bytes
• How to efficiently manipulate and

manage memory
• How computers compile programs
• Uses the C programming language
• Programming style and software

development practices

5

CS107 Learning Goals
The goals for CS107 are for students to gain mastery of

- writing C programs with complex use of memory and pointers
- an accurate model of the address space and compile/runtime behavior

of C programs
to achieve competence in

- translating C to/from assembly
- writing programs that respect the limitations of computer arithmetic
- identifying bottlenecks and improving runtime performance
- writing code that correctly ports to other architectures
- working effectively in a Unix development environment

and have exposure to
- a working understanding of the basics of computer architecture

6

Course Overview
• Representing data with bits and bytes
• C-strings
• Pointers, memory allocation and management
• Generic C programs
• Floating-point numbers
• Assembly language
• The Heap

7

You’ll be able to…
• Manipulate bits and bytes and work within the limits of computer arithmetic
• Implement complex algorithms using C-strings
• Re-implement existing Unix tools yourself
• Write generic C code that works with a variety of data types
• Defuse a “bomb” program without ever seeing its source code
• Find security vulnerabilities in programs
• Create your own memory allocator to manage heap memory

8

Companion Class: CS107A
• CS107A is an extra 1-unit “Pathfinders” or “ACE” section with additional course

support, practice and instruction.
• Meets for an additional weekly section and has additional review sessions
• Entry by application – see the FAQ on the course website for details

9

Course Website

cs107.stanford.edu

https://cs107.stanford.edu/

10

Nice to meet you!

Lecturer: Nick Troccoli

Course Assistants (CAs)

The course staff will lead labs, grade coursework, help you when you have
questions, and much more!

11

Plan For Today
• Introduction
• CS107 Course Policies
• Unix and the Command Line
• Getting Started With C

12

Textbooks
• Computer Systems: A Programmer’s Perspective

by Bryant & O’Hallaron, 3rd Edition
• 3rd edition matters – important updates to course

materials
• A C programming reference of your choice
• The C Programming Language by Kernighan and

Ritchie (free link on course website Resources page)
• Other C programming books, websites, or reference

sheets

13

Grading

**** 35% Assignments
** 15% Lab Participation
** 17% Midterm Exam
**** 33% Final Exam

14

Grading

**** 35% Assignments
** 15% Lab Participation
** 17% Midterm Exam
**** 33% Final Exam

15

Assignments
• 8 programming assignments completed

individually using Unix command line tools
• Free software, pre-installed on Myth machines /

available on course website
• We will give out starter projects for each

assignment
• Graded on functionality (behavior) and style

(elegance)
• Functionality graded using automated tools, given

as point score
• Style graded via automated tests and TA code

review, given as bucket score
• Grades returned via course website

16

The Style Bucket System

+ An outstanding job; could be used as course example code for good style.

ok A good job; solid effort, but also opportunities for improvement.

- Shows some effort and understanding, but has larger problems that
should be focused on.

- - Little effort; incomplete or mostly non-functional.

0 No work submitted, or barely any changes from the starter assignment.

17

Getting Help
• Visit Nick and the CAs at office hours
• Scheduled throughout the week; schedule will be posted on course website tomorrow
• Best for most coding/debugging questions, or longer course material discussions

• Post on Piazza
• Online discussion forum for students; post questions, answer other students’ questions
• Best for course material discussions, course policy questions or general assignment

questions (DON’T POST ASSIGNMENT CODE!)

• Email the Course Staff
• cs107@cs.stanford.edu – please do not email CAs individually
• Best for private matters or brief coding/debugging questions.

mailto:cs107@cs.stanford.edu

18

Late Policy
• Submitting by the assignment deadline typically earns an extra-credit on-time

bonus, usually ~5%.
• If you miss the deadline, there may be a grace period for late submissions,

typically 48 hours, but submitting during the grace period does not earn any
on-time bonus.
• “Pre-granted grace period” – additional extensions granted only in very special

circumstances. Instructor must approve extensions.

19

Grading

**** 35% Assignments
** 15% Lab Participation
** 17% Midterm Exam
**** 33% Final Exam

20

Lab Sections
• Weekly 1 hour 50 minute labs led by a CA, starting next week, offered on

Tuesdays, Wednesdays and Thursdays.
• Hands-on practice in pairs at computers with lecture material and course

concepts.
• Graded on attendance + participation (verified by submitting work at the end)
• Lab signups open Wednesday 1/9 at 5:55PM, and are first-come first-serve. A

link will be posted on the course website.

21

Grading

**** 35% Assignments
** 15% Lab Participation
** 17% Midterm Exam
**** 33% Final Exam

22

Exams
• Midterm exam – Friday, February 15th, 12:30-2:20PM (during full class period)
• Final exam – Friday, March 22nd, 12:15-3:15PM

• You MUST be able to take both exams at the scheduled time, except for
university athletics or OAE accommodations.
• Both exams are closed-book, closed-notes, but you may bring in 1 double-

sided page of notes for the midterm, and 2 double-sided pages of notes for the
final. You will also be provided with a syntax reference sheet.

23

Grading

**** 35% Assignments
** 15% Lab Participation
** 17% Midterm Exam
**** 33% Final Exam

24

Stanford Honor Code
• The Honor Code is an undertaking of the students, individually and collectively:

• that they will not give or receive aid in examinations; that they will not give or receive unpermitted aid in class work,
in the preparation of reports, or in any other work that is to be used by the instructor as the basis of grading;

• that they will do their share and take an active part in seeing to it that others as well as themselves uphold the spirit
and letter of the Honor Code.

• The faculty on its part manifests its confidence in the honor of its students by refraining from proctoring examinations and
from taking unusual and unreasonable precautions to prevent the forms of dishonesty mentioned above. The faculty will
also avoid, as far as practicable, academic procedures that create temptations to violate the Honor Code.

• While the faculty alone has the right and obligation to set academic requirements, the students and faculty will work
together to establish optimal conditions for honorable academic work.

see also: http://honorcode.stanford.edu/

It is your responsibility to ensure you have read and are familiar with the honor code guidelines posted on the main page
of the CS107 course website. Please read them, and come talk to us if you have any questions or concerns.

http://honorcode.stanford.edu/

25

Honor Code and CS107
• Please help us ensure academic integrity:
• Indicate any assistance received on HW (books, friends, etc.).
• Do not look at other people's solution code
• Do not give your solution code to others, or post it on the web or our Piazza forum.
• Report any inappropriate activity you see performed by others.

• Assignments are checked regularly for similarity with help of software tools.

• If you realize that you have made a mistake, you may retract your submission
to any assignment at any time, no questions asked.

• If you need help, please contact us and we will help you.
• We do not want you to feel any pressure to violate the Honor Code in order to succeed

in this course.

26

Plan For Today
• Introduction
• CS107 Course Policies
• Unix and the Command Line
• Getting Started With C

27

What is Unix?
• Unix: a set of standards and tools commonly used in software development.
• Macs are built on top of Unix
• Linux is built on top of Unix

• You can navigate a Unix system using the command line (“terminal”)
• Every Unix system works with the same tools and commands

28

What is the Command Line?
• The command-line is a text-based interface to navigate a computer, instead of

a Graphical User Interface (GUI).

Graphical User Interface Text-based interface

29

Why Use Unix / the Command Line?
• You can navigate almost any device using the same tools and commands:

• Servers

• Laptops and desktops

• Embedded devices (Raspberry Pi, etc.)

• Mobile Devices (Android, etc.)

• Used frequently by software engineers:

• Web development: running servers and web tools on servers

• Machine learning: processing data on servers, running algorithms

• Systems: writing operating systems, networking code and embedded software

• Mobile Development: running tools, managing libraries

• And more…

• We are going to use Unix and the command line to write, debug, and run our

programs.

30

Learning Unix and the Command Line
• Using Unix and the command line can be intimidating at first:
• It looks really retro!
• How do I know what to type?

• We are going to teach you how!
• Live lecture demos
• Lab activities
• Assignments
• The Resources page of the course website

31

Command Line Vs. GUI
Just like a GUI file explorer interface, a terminal interface:
• shows you a specific place on your computer at any given time.
• lets you go into folders and out of folders.
• lets you create new files and edit files.
• lets you run programs.

Graphical User Interface Command-line interface

32

Demo: Using Unix and the
Command Line

33

Unix Commands Recap
• cd – change directories
• ls – list directory contents
• mkdir – make directory
• emacs – open text editor
• rm – remove file or folder
• man – view manual pages

See the Resources page of the course website for more commands, and a
complete reference.

34

Plan For Today
• Introduction
• CS107 Course Policies
• Unix and the Command Line
• Getting Started With C

35

The C Language
C was created around 1970 to make writing Unix and Unix tools easier.

• Part of the C/C++/Java family of languages (C++ and Java were created later)

• Design principles:

• Small, simple abstractions of hardware

• Minimalist aesthetic

• Prioritizes efficiency and minimalism over safety and high-level abstractions

36

C vs. C++ and Java
They all share:
• Syntax
• Basic data types
• Arithmetic, relational, and logical

operators

C doesn’t have:
• More advanced features like

operator overloading, default
arguments, pass by reference, classes
and objects, ADTs, etc.
• Extensive libraries (no graphics,

networking, etc.) – this means not
much to learn C!
• many compiler and runtime checks

(this may cause security
vulnerabilities!)

37

Programming Language Philosophies
C is procedural: you write functions, rather than define new variable types with
classes and call methods on objects. C is small, fast and efficient.

C++ is procedural, with objects: you write functions, and also define new
variable types with classes, and call methods on objects.

Java is object-oriented: it is even more centered around defining new variable
types with classes, and calling methods on objects.

38

Why C?
• Many tools (and even other languages, like Python!) are built with C.
• C is the language of choice for fast, highly efficient programs.
• C is popular for systems programming (operating systems, networking, etc.)
• C lets you work at a lower level to manipulate and understand the underlying

system.

39

Programming Language Popularity

40

Our First C Program
/*
* hello.c
* This program prints a welcome message
* to the user.
*/

#include <stdio.h> // for printf

int main(int argc, char *argv[]) {
printf("Hello, world!\n");
return 0;

}

41

Our First C Program
/*
* hello.c
* This program prints a welcome message
* to the user.
*/

#include <stdio.h> // for printf

int main(int argc, char *argv[]) {
printf("Hello, world!\n");
return 0;

}
Program comments
Inline comments can be written as:
// comment

42

Our First C Program
/*
* hello.c
* This program prints a welcome message
* to the user.
*/

#include <stdio.h> // for printf

int main(int argc, char *argv[]) {
printf("Hello, world!\n");
return 0;

} Import statements
C libraries are written with angle brackets.
Local libraries have quotes:
#include "lib.h"

43

Our First C Program
/*
* hello.c
* This program prints a welcome message
* to the user.
*/

#include <stdio.h> // for printf

int main(int argc, char *argv[]) {
printf("Hello, world!\n");
return 0;

}

Main function – entry point for the program
Should always return an integer (0 = success)

44

Our First C Program
/*
* hello.c
* This program prints a welcome message
* to the user.
*/

#include <stdio.h> // for printf

int main(int argc, char *argv[]) {
printf("Hello, world!\n");
return 0;

}

Main parameters – main takes two parameters,
both relating to the command line arguments
used to execute the program.

argc is the number of arguments in argv
argv is an array of arguments (char * is C string)

45

Our First C Program
/*
* hello.c
* This program prints a welcome message
* to the user.
*/

#include <stdio.h> // for printf

int main(int argc, char *argv[]) {
printf("Hello, world!\n");
return 0;

}

printf – prints output to the screen

46

Familiar Syntax
int x = 42 + 7 * -5; // variables, types
double pi = 3.14159;
char c = 'Q'; /* two comment styles */

for (int i = 0; i < 10; i++) { // for loops
if (i % 2 == 0) { // if statements

x += i;
}

}

while (x > 0 && c == 'Q' || b) { // while loops, logic
x = x / 2;
if (x == 42) { return 0; }

}

fooBar(x, 17, c); // function call

47

Console Output: printf
printf(text, arg1, arg2, arg3);

// Example
char *classPrefix = "CS";
int classNumber = 107;
printf("You are in %s%d", classPrefix, classNumber); // You are in CS107

printf makes it easy to print out the values of variables or expressions.
If you include placeholders in your printed text, printf will replace each
placeholder in order with the values of the parameters passed after the text.

%s (string) %d (integer) %f (double)

48

Writing, Debugging and Compiling
We will use:
• the emacs text editor to write our C programs.
• the gcc and make tools to compile our C programs.
• the gdb debugger to debug our programs.
• the valgrind tools to debug memory errors, and measure the efficiency of our

programs.

49

Text Editor
• Emacs is the editor we recommend and will use this quarter in lectures and

labs to write and edit C programs.
• There are helpful emacs tips and guides on the Resources page of the course

website.
• We will only support the emacs text editor this quarter for working on

programs. In particular, we do not recommend using a local text editor such
as Sublime Text due to risks of data loss.

50

Demo: Compiling And
Running A C Program

51

Working On C Programs Recap
• ssh – remotely log in to Myth computers
• Emacs – text editor to write and edit C programs
• Use the mouse to position cursor, scroll, and highlight text
• Ctl-x Ctl-s to save, Ctl-x Ctl-c to quit

• make – compile program using provided Makefile
• ./myprogram – run executable program (optionally with arguments)
• make clean – remove executables and other compiler files
• Lecture code is accessible at /afs/ir/class/cs107/samples/lectN
• Hint: try looking up the cp command for how to make your own copy to edit/run!

See the Resources page of the course website for more commands, and a
complete reference.

52

assign0
Assignment 0 (Introduction to Unix and C) will be released tomorrow morning,
and is due in one week on Mon. 1/14 at 11:59PM PST.

There are 5 parts to the assignment, which is meant to get you comfortable
using the command line, and editing/compiling/running C programs:
• Visit the Resources page to become familiar with different Unix commands
• Clone the assign0 starter project
• Answer several questions in readme.txt
• Compile a provided C program and modify it
• Submit the assignment

53

Recap
• CS107 is a programming class in C that teaches you about what goes on under

the hood of programming languages and software.
• We’ll use Unix and command line tools to write, debug and run our programs.
• Please visit the course website, cs107.stanford.edu, where you can read the

General Information Handout, information about the Honor Code in CS107,
and more about CS107 course policies and logistics.

We’re looking forward to an awesome quarter!

Next time: Bits and Bytes

