
1
This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Marty Stepp, Cynthia Lee, Chris Gregg, and others.

CS107, Lecture 10
Floating Point

Reading: B&O 2.4

2

Learning Goals
Understand the design and compromises of the floating point representation,
including:
• Fixed point vs. floating point
• How a floating point number is represented in binary
• Issues with floating point imprecision
• Other potential pitfalls using floating point numbers in programs

3

Plan For Today
• Recap: Generics with Function Pointers
• Representing real numbers
• Fixed Point
• Break: Announcements
• Floating Point

4

Plan For Today
• Recap: Generics with Function Pointers
• Representing real numbers
• Fixed Point
• Break: Announcements
• Floating Point

5

Function Pointers
• In C, there is a variable type for functions!
• We can pass functions as parameters, store functions in variables, etc.
• Why is this useful?

6

Generics Limitations
Sometimes, there is functionality that cannot be made generic.
void bubble_sort(void *arr, int n, int elem_size_bytes) {

while (true) {
bool swapped = false;
for (int i = 1; i < n; i++) {

void *prev_elem = (char *)arr + (i-1)*elem_size_bytes;
void *curr_elem = (char *)arr + i*elem_size_bytes;
if (curr_elem should come before prev_elem) {

swapped = true;
swap(prev_elem, curr_elem, elem_size_bytes);

}
}

if (!swapped) {
return;

}
}

}

7

Generics Limitations
Sometimes, there is functionality that cannot be made generic. The caller can
pass in a function to perform that functionality for the data they are providing.
void bubble_sort(void *arr, int n, int elem_size_bytes,

bool (*cmp_fn)(const void *, const void *)) {
while (true) {

bool swapped = false;
for (int i = 1; i < n; i++) {

void *prev_elem = (char *)arr + (i-1)*elem_size_bytes;
void *curr_elem = (char *)arr + i*elem_size_bytes;
if (cmp_fn(prev_elem, curr_elem) > 0)) {

swapped = true;
swap(prev_elem, curr_elem, elem_size_bytes);

}
}

if (!swapped) {
return;

}
}

8

Generic C Standard Library Functions
• qsort – I can sort an array of any type! To do that, I need you to provide me a

function that can compare two elements of the kind you are asking me to sort.
• bsearch – I can use binary search to search for a key in an array of any type! To

do that, I need you to provide me a function that can compare two elements
of the kind you are asking me to search.
• lfind – I can use linear search to search for a key in an array of any type! To do

that, I need you to provide me a function that can compare two elements of
the kind you are asking me to search.
• lsearch - I can use linear search to search for a key in an array of any type! I

will also add the key for you if I can’t find it. In order to do that, I need you to
provide me a function that can compare two elements of the kind you are
asking me to search.

9

Generic C Standard Library Functions
• scandir – I can create a directory listing with any order and contents! To do

that, I need you to provide me a function that tells me whether or not you
want me to include a given directory entry in the listing. I also need you to
provide me a function that tells me the correct ordering of two given directory
entries.

10

Function Pointers
Here’s the variable type syntax for a function:

[return type] (*[name])([parameters])

11

Function Pointers
int do_something(char *str) {

…
}

int main(int argc, char *argv[]) {
…
int (*func_var)(char *) = do_something;
…
func_var("testing");
return 0;

}

12

Function Pointers
void bubble_sort(void *arr, int n, int elem_size_bytes,

int (*cmp_fn)(const void *, const void *)) {

…
}

int cmp_double(const void *, const void *) {…}

int main(int argc, char *argv[]) {
…
double values[] = {1.2, 3.5, 12.2};
int n = sizeof(values) / sizeof(values[0]);
bubble_sort(values, n, sizeof(*values), cmp_double);
…

}

13

Comparison Functions
• Comparison functions are a common use of function parameters, because

many generic functions must know how to compare elements of your type.
• Comparison functions always take pointers to the data they care about, since

the data could be any size!

When writing a comparison function callback, use the following pattern:
1) Cast the void *argument(s) and set typed pointers equal to them.
2) Dereference the typed pointer(s) to access the values.
3) Perform the necessary operation.

(steps 1 and 2 can often be combined into a single step)

14

Comparison Functions
• It should return:
• < 0 if first value should come before second value
• > 0 if first value should come after second value
• 0 if first value and second value are equivalent

• This is the same return value format as strcmp!

int (*compare_fn)(const void *a, const void *b)

15

Function Pointers

int integer_compare(void *ptr1, void *ptr2) {
// cast arguments to int *s and dereference
int num1 = *(int *)ptr1;
int num2 = *(int *)ptr2;

// perform operation
return num1 – num2;

}

…
qsort(mynums, count, sizeof(*mynums), integer_compare);

16

String Comparison Function

int string_compare(void *ptr1, void *ptr2) {
// cast arguments and dereference
char *str1 = *(char **)ptr1;
char *str2 = *(char **)ptr2;

// perform operation
return strcmp(str1, str2);

}

…
qsort(mystrs, count, sizeof(*mystrs), string_compare);

17

Generics Wrap-Up
• We use void * pointers and memory operations like memcpy and memmove

to make data operations generic.
• We use function pointers to make logic/functionality operations generic.

18

memset
memset is a function that sets a specified amount of bytes at one address to a
certain value.

void *memset(void *s, int c, size_t n);

It fills n bytes starting at memory location s with the byte c. (It also returns s).

int counts[5];
memset(counts, 0, 3); // zero out first 3 bytes at counts
memset(counts + 3, 0xff, 4) // set 3rd entry’s bytes to 1s

19

Plan For Today
• Recap: Generics with Function Pointers
• Representing real numbers
• Fixed Point
• Break: Announcements
• Floating Point

20

Real Numbers
• We previously discussed representing integer numbers using two’s

complement.
• However, this system does not represent real numbers such as 3/5 or 0.25.
• How can we design a representation for real numbers?

21

Real Numbers
Problem: unlike with the integer number line, where there are a finite number
of values between two numbers, there are an infinite number of real number
values between two numbers!

Integers between 0 and 2: 1
Real Numbers Between 0 and 2: 0.1, 0.01, 0.001, 0.0001, 0.00001,…

We need a fixed-width representation for real numbers. Therefore, by
definition, we will not be able to represent all numbers.

22

Real Numbers
Problem: every number base has un-representable real numbers.

Base 10: 1/610 = 0.16666666…..10

Base 2: 1/1010 = 0.000110011001100110011…2

Therefore, by representing in base 2, we will not be able to represent all
numbers, even those we can exactly represent in base 10.

23

Fixed Point
• Idea: Like in base 10, let’s add binary decimal places to our existing number

representation.

1 0 1 1 . 0 1 1
23 22 21 20 2-1 2-2 2-3

5 9 3 4 . 2 1 6
103 102 101 100 10-1 10-2 10-3

24

Plan For Today
• Recap: Generics with Function Pointers
• Representing real numbers
• Fixed Point
• Break: Announcements
• Floating Point

25

Fixed Point
• Idea: Like in base 10, let’s add binary decimal places to our existing number

representation.

• Pros: arithmetic is easy! And we know exactly how much precision we have.

1 0 1 1 . 0 1 1
8s 4s 2s 1s 1/2s 1/4s 1/8s

26

Fixed Point
• Problem: we have to fix where the decimal point is in our representation.

What should we pick? This also fixes us to 1 place per bit.

. 0 1 1 0 0 1 1
1/2s 1/4s 1/8s …

1 0 1 1 0 . 1 1
16s 8s 4s 2s 1s 1/2s 1/4s

27

Let’s Get Real
What would be nice to have in a real number representation?
• Represent widest range of numbers possible
• Flexible “floating” decimal point
• Represent scientific notation numbers, e.g. 1.2 x 106

• Still be able to compare quickly
• Have more predictable over/under-flow behavior

28

Plan For Today
• Recap: Generics with Function Pointers
• Representing real numbers
• Fixed Point
• Break: Announcements
• Floating Point

29

Announcements
• Functions like versionsort and alphasort prohibited on assign4
• Brown Institute “Magic Grants” application open! See brown.stanford.edu
• CURIS undergraduate summer research applications open! See

curis.stanford.edu. Due 2/10.

30

Midterm Exam
• The midterm exam is Fri. 2/15 12:30-2:20PM in Hewlett 200 and Hewlett 201
• Last names A-G: Hewlett 201
• Last Names H-Z: Hewlett 200

• Covers material through lab4/assign4 (no floats or assembly language)
• Closed-book, 1 2-sided page of notes permitted, C reference sheet provided
• Administered via BlueBook software (on your laptop)
• Practice materials and BlueBook download available on course website
• If you have academic (e.g. OAE) or athletics accommodations, please let us

know by Sunday 2/10 if possible.
• If you do not have a workable laptop for the exam, you must let us know by

Sunday 2/10. Limited charging outlets will be available for those who need
them.

31

Plan For Today
• Recap: Generics with Function Pointers
• Representing real numbers
• Fixed Point
• Break: Announcements
• Floating Point

32

Let’s Get Real
What would be nice to have in a real number representation?
• Represent widest range of numbers possible
• Flexible “floating” decimal point
• Represent scientific notation numbers, e.g. 1.2 x 106

• Still be able to compare quickly
• Have more predictable over/under-flow behavior

33

IEEE Floating Point
Let’s aim to represent numbers of the following scientific-notation-like format:

! ∗ 2$
With this format, 32-bit floats represent numbers in the range -3.4E+38 to
3.4E+38! Is every number between those representable? No.

34

IEEE Single Precision Floating Point

! ∗ 2$Sign bit (0 = positive)

35

Exponent

Exponent (Binary) Exponent (Base 10)
00000000 ?
00000001 ?
00000010 ?
00000011 ?

… ?
11111100 ?
11111101 ?
11111110 ?
11111111 ?

36

Exponent

Exponent (Binary) Exponent (Base 10)
00000000 RESERVED
00000001 ?
00000010 ?
00000011 ?

… ?
11111100 ?
11111101 ?
11111110 ?
11111111 RESERVED

37

Exponent

Exponent (Binary) Exponent (Base 10)
00000000 RESERVED
00000001 -126
00000010 -125
00000011 -124

… …
11111100 125
11111101 126
11111110 127
11111111 RESERVED

38

Exponent

• The exponent is not represented in two’s complement.
• Instead, exponents are sequentially represented starting from 000…1 (most

negative) to 111…10 (most positive).
• Actual value = binary value – 127

00000001 1 – 127 = -126
00000010 2 – 127 = -125

… …
11111101 253 – 127 = 126
11111110 254 – 127 = 127

39

Fraction

! ∗ 2$
• We could just encode whatever x is in the fraction field. But there’s a trick we

can use to make the most out of the bits we have.

40

An Interesting Observation
In Base 10:
42.4 x 105 = 4.24 x 106

324.5 x 105 = 3.245 x 107

0.624 x 105 = 6.24 x 104

In Base 2:
10.1 x 25 = 1.01 x 26

1011.1 x 25 = 1.0111 x 28

0.110 x 25 = 1.10 x 24

We tend to adjust the exponent
until we get down to one place
to the left of the decimal point.

Observation: in base 2, this
means there is always a 1 to the
left of the decimal point!

41

Fraction

! ∗ 2$
• We can adjust this value to fit the format described previously. Then, x will

always be in the format 1.XXXXXXXXX…
• Therefore, in the fraction portion, we can encode just what is to the right of

the decimal point! This means we get one more digit for precision.

Value encoded = 1._[FRACTION BINARY DIGITS]_

42

Practice

Sign Exponent Fraction

0 0 … 0 0 0 1 0 1 0 …

Is this number:
A) Greater than 0?
B) Less than 0?

Is this number:
A) Less than -1?
B) Between -1 and 1?
C) Greater than 1?

43

Skipping Numbers
• We said that it’s not possible to represent all real numbers using a fixed-width

representation. What does this look like?
• https://www.h-schmidt.net/FloatConverter/IEEE754.html
• https://twitter.com/D_M_Gregory/status/1044008750162604032

https://www.h-schmidt.net/FloatConverter/IEEE754.html

44

Let’s Get Real
What would be nice to have in a real number representation?
• Represent widest range of numbers possible
• Flexible “floating” decimal point
• Represent scientific notation numbers, e.g. 1.2 x 106

• Still be able to compare quickly
• Have more predictable over/under-flow behavior

45

Representing Zero
• The float representation of zero is all zeros (with any value for the sign bit)

• This means there are two representations for zero! L

Sign Exponent Fraction

any All zeros All zeros

46

Representing Small Numbers
• If the exponent is all zeros, we switch into “denormalized” mode.

• We now treat the exponent as -126, and the fraction as without the leading 1.
• This allows us to represent the smallest numbers as precisely as possible.

Sign Exponent Fraction

any All zeros Any

47

Representing Exceptional Values
• If the exponent is all ones, and the fraction is all zeros, we have +- infinity.

• The sign bit indicates whether it is positive or negative infinity.
• Floats have built-in handling of over/underflow!
• Infinity + anything = infinity
• Negative infinity + negative anything = negative infinity
• Etc.

Sign Exponent Fraction

any All ones All zeros

48

Representing Exceptional Values
• If the exponent is all ones, and the fraction is nonzero, we have Not a Number.

• NaN results from computations that produce an invalid mathematical result.
• Sqrt(negative)
• Infinity / infinity
• Infinity + -infinity
• Etc.

Sign Exponent Fraction

any 1 … … … … 1 Any nonzero

49

Number Ranges
• 32-bit integer (type int):

› -2,147,483,648 to 2147483647
› Every integer in that range can be represented

• 64-bit integer (type long):
› −9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

• 32-bit floating point (type float):
• ~1.7 x10-38 to ~3.4 x1038

• Not all numbers in the range can be represented (obviously—uncountable)

• Not even all integers in the range can be represented!

• Gaps can get quite large! (larger the exponent, larger the gap between successive
fraction values)

• 64-bit floating point (type double):
• ~2 x10-308 to ~2 x10308

50

Floating Point Arithmetic

51

Floating Point Arithmetic

What does this number look like
in 32-bit IEEE format?

52

Floating Point Arithmetic

Step 1: convert from base 10 to binary

What is 100000000000000000003.14 in binary? Let’s find out!
http://web.stanford.edu/class/archive/cs/cs107/cs107.1184/float/convert.html

1010110101111000111010111100010110101100011000100000000000000000011.0010001111010111000010100011…

http://web.stanford.edu/class/archive/cs/cs107/cs107.1184/float/convert.html

53

Floating Point Arithmetic

Step 2: find most significant 1 and take the next 23
digits for the fractional component, rounding if
needed.

1 01011010111100011101100

1010110101111000111010111100010110101100011000100000000000000000011.0010001111010111000010100011…

54

Floating Point Arithmetic

Step 3: find how many places we need to shift left
to put the number in 1.xxx format. This fills in the
exponent component.

66 shifts -> 66 + 127 = 193

1010110101111000111010111100010110101100011000100000000000000000011.0010001111010111000010100011…

55

Floating Point Arithmetic

Step 4: if the sign is positive, the sign bit is 0.
Otherwise, it’s 1.

Sign bit is 0.

1010110101111000111010111100010110101100011000100000000000000000011.0010001111010111000010100011…

56

Floating Point Arithmetic

57

Floating Point Arithmetic

58

Floating Point Arithmetic

The rounding that happens during the calculation of 0.1 + 0.2
produces a different number than 0.3!

59

Floating Point Arithmetic
• http://geocar.sdf1.org/numbers.html

60

Let’s Get Real
What would be nice to have in a real number representation?
• Represent widest range of numbers possible
• Flexible “floating” decimal point
• Represent scientific notation numbers, e.g. 1.2 x 106

• Still be able to compare quickly
• Have more predictable over/under-flow behavior

61

Floats Summary
• IEEE Floating Point is a carefully-thought-out standard. It’s complicated, but

engineered for their goals.
• Floats have an extremely wide range, but cannot represent every number in

that range.
• Some approximation and rounding may occur! This means you definitely don’t

want to use floats e.g. for currency.
• Associativity does not hold for numbers far apart in the range
• Equality comparison operations are often unwise.

62

Recap
• Recap: Generics with Function Pointers
• Representing real numbers
• Fixed Point
• Break: Announcements
• Floating Point

Next time: assembly language

