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CS107, Lecture 10
Floating Point
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Learning Goals
Understand the design and compromises of the floating point representation, 
including:
• Fixed point vs. floating point
• How a floating point number is represented in binary
• Issues with floating point imprecision
• Other potential pitfalls using floating point numbers in programs
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Plan For Today
• Recap: Generics with Function Pointers
• Representing real numbers
• Fixed Point
• Break: Announcements
• Floating Point
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Function Pointers
• In C, there is a variable type for functions!
• We can pass functions as parameters,  store functions in variables, etc.
• Why is this useful?
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Generics Limitations
Sometimes, there is functionality that cannot be made generic.
void bubble_sort(void *arr, int n, int elem_size_bytes) {

while (true) {
bool swapped = false;
for (int i = 1; i < n; i++) {

void *prev_elem = (char *)arr + (i-1)*elem_size_bytes;
void *curr_elem = (char *)arr + i*elem_size_bytes;
if (curr_elem should come before prev_elem) {

swapped = true;
swap(prev_elem, curr_elem, elem_size_bytes);

}
}

if (!swapped) {
return;

}
}

}
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Generics Limitations
Sometimes, there is functionality that cannot be made generic.  The caller can 
pass in a function to perform that functionality for the data they are providing.
void bubble_sort(void *arr, int n, int elem_size_bytes, 

bool (*cmp_fn)(const void *, const void *)) {
while (true) {

bool swapped = false;
for (int i = 1; i < n; i++) {

void *prev_elem = (char *)arr + (i-1)*elem_size_bytes;
void *curr_elem = (char *)arr + i*elem_size_bytes;
if (cmp_fn(prev_elem, curr_elem) > 0)) {

swapped = true;
swap(prev_elem, curr_elem, elem_size_bytes);

}
}

if (!swapped) {
return;

}
}
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Generic C Standard Library Functions
• qsort – I can sort an array of any type!  To do that, I need you to provide me a 

function that can compare two elements of the kind you are asking me to sort.
• bsearch – I can use binary search to search for a key in an array of any type!  To 

do that, I need you to provide me a function that can compare two elements 
of the kind you are asking me to search.
• lfind – I can use linear search to search for a key in an array of any type!  To do 

that, I need you to provide me a function that can compare two elements of 
the kind you are asking me to search.
• lsearch - I can use linear search to search for a key in an array of any type!  I 

will also add the key for you if I can’t find it.   In order to do that, I need you to 
provide me a function that can compare two elements of the kind you are 
asking me to search.
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Generic C Standard Library Functions
• scandir – I can create a directory listing with any order and contents!  To do 

that, I need you to provide me a function that tells me whether or not you 
want me to include a given directory entry in the listing.  I also need you to 
provide me a function that tells me the correct ordering of two given directory 
entries.
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Function Pointers
Here’s the variable type syntax for a function:

[return type] (*[name])([parameters])



11

Function Pointers
int do_something(char *str) {

…
}

int main(int argc, char *argv[]) {
…
int (*func_var)(char *) = do_something;
…
func_var("testing");
return 0;   

}
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Function Pointers
void bubble_sort(void *arr, int n, int elem_size_bytes, 

int (*cmp_fn)(const void *, const void *)) {

…
}

int cmp_double(const void *, const void *) {…}

int main(int argc, char *argv[]) {
…
double values[] = {1.2, 3.5, 12.2};
int n = sizeof(values) / sizeof(values[0]);
bubble_sort(values, n, sizeof(*values), cmp_double);
…

}
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Comparison Functions
• Comparison functions are a common use of function parameters, because 

many generic functions must know how to compare elements of your type.
• Comparison functions always take pointers to the data they care about, since 

the data could be any size!

When writing a comparison function callback, use the following pattern:
1) Cast the void *argument(s) and set typed pointers equal to them.
2) Dereference the typed pointer(s) to access the values.
3) Perform the necessary operation.

(steps 1 and 2 can often be combined into a single step)
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Comparison Functions
• It should return:
• < 0 if first value should come before second value
• > 0 if first value should come after second value
• 0 if first value and second value are equivalent

• This is the same return value format as strcmp!

int (*compare_fn)(const void *a, const void *b)
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Function Pointers

int integer_compare(void *ptr1, void *ptr2) {
// cast arguments to int *s and dereference
int num1 = *(int *)ptr1;
int num2 = *(int *)ptr2;

// perform operation
return num1 – num2;

}

…
qsort(mynums, count, sizeof(*mynums), integer_compare);
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String Comparison Function

int string_compare(void *ptr1, void *ptr2) {
// cast arguments and dereference
char *str1 = *(char **)ptr1;
char *str2 = *(char **)ptr2;

// perform operation
return strcmp(str1, str2);

}

…
qsort(mystrs, count, sizeof(*mystrs), string_compare);
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Generics Wrap-Up
• We use void * pointers and memory operations like memcpy and memmove

to make data operations generic.
• We use function pointers to make logic/functionality operations generic.
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memset
memset is a function that sets a specified amount of bytes at one address to a 
certain value.

void *memset(void *s, int c, size_t n);

It fills n bytes starting at memory location s with the byte c.  (It also returns s).

int counts[5];
memset(counts, 0, 3); // zero out first 3 bytes at counts
memset(counts + 3, 0xff, 4) // set 3rd entry’s bytes to 1s
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Plan For Today
• Recap: Generics with Function Pointers
• Representing real numbers
• Fixed Point
• Break: Announcements
• Floating Point
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Real Numbers
• We previously discussed representing integer numbers using two’s 

complement.
• However, this system does not represent real numbers such as 3/5 or 0.25.
• How can we design a representation for real numbers?
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Real Numbers
Problem: unlike with the integer number line, where there are a finite number 
of values between two numbers, there are an infinite number of real number 
values between two numbers!

Integers between 0 and 2: 1
Real Numbers Between 0 and 2: 0.1, 0.01, 0.001, 0.0001, 0.00001,…

We need a fixed-width representation for real numbers.  Therefore, by 
definition, we will not be able to represent all numbers.
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Real Numbers
Problem: every number base has un-representable real numbers.

Base 10: 1/610 = 0.16666666…..10

Base 2: 1/1010 = 0.000110011001100110011…2

Therefore, by representing in base 2, we will not be able to represent all 
numbers, even those we can exactly represent in base 10.
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Fixed Point
• Idea: Like in base 10, let’s add binary decimal places to our existing number 

representation.

1 0 1 1 . 0 1 1
23 22 21 20 2-1 2-2 2-3

5 9 3 4 . 2 1 6
103 102 101 100 10-1 10-2 10-3
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Fixed Point
• Idea: Like in base 10, let’s add binary decimal places to our existing number 

representation.

• Pros: arithmetic is easy!  And we know exactly how much precision we have.

1 0 1 1 . 0 1 1
8s 4s 2s 1s 1/2s 1/4s 1/8s
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Fixed Point
• Problem: we have to fix where the decimal point is in our representation.  

What should we pick?  This also fixes us to 1 place per bit.

. 0 1 1 0 0 1 1
1/2s 1/4s 1/8s …

1 0 1 1 0 . 1 1
16s 8s 4s 2s 1s 1/2s 1/4s
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Let’s Get Real
What would be nice to have in a real number representation?
• Represent widest range of numbers possible
• Flexible “floating” decimal point
• Represent scientific notation numbers, e.g. 1.2 x 106

• Still be able to compare quickly
• Have more predictable over/under-flow behavior
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Announcements
• Functions like versionsort and alphasort prohibited on assign4
• Brown Institute “Magic Grants” application open!  See brown.stanford.edu
• CURIS undergraduate summer research applications open!  See 

curis.stanford.edu.  Due 2/10.
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Midterm Exam
• The midterm exam is Fri. 2/15 12:30-2:20PM in Hewlett 200 and Hewlett 201
• Last names A-G: Hewlett 201
• Last Names H-Z: Hewlett 200

• Covers material through lab4/assign4 (no floats or assembly language)
• Closed-book, 1 2-sided page of notes permitted, C reference sheet provided
• Administered via BlueBook software (on your laptop)
• Practice materials and BlueBook download available on course website
• If you have academic (e.g. OAE) or athletics accommodations, please let us 

know by Sunday 2/10 if possible.
• If you do not have a workable laptop for the exam, you must let us know by 

Sunday 2/10.  Limited charging outlets will be available for those who need 
them.
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Let’s Get Real
What would be nice to have in a real number representation?
• Represent widest range of numbers possible
• Flexible “floating” decimal point
• Represent scientific notation numbers, e.g. 1.2 x 106

• Still be able to compare quickly
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IEEE Floating Point
Let’s aim to represent numbers of the following scientific-notation-like format:

! ∗ 2$
With this format, 32-bit floats represent numbers in the range -3.4E+38 to 
3.4E+38!  Is every number between those representable?  No.
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IEEE Single Precision Floating Point

! ∗ 2$Sign bit (0 = positive)
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Exponent

Exponent (Binary) Exponent (Base 10)
00000000 ?
00000001 ?
00000010 ?
00000011 ?

… ?
11111100 ?
11111101 ?
11111110 ?
11111111 ?
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Exponent

Exponent (Binary) Exponent (Base 10)
00000000 RESERVED
00000001 ?
00000010 ?
00000011 ?

… ?
11111100 ?
11111101 ?
11111110 ?
11111111 RESERVED
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Exponent

Exponent (Binary) Exponent (Base 10)
00000000 RESERVED
00000001 -126
00000010 -125
00000011 -124

… …
11111100 125
11111101 126
11111110 127
11111111 RESERVED
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Exponent

• The exponent is not represented in two’s complement.
• Instead, exponents are sequentially represented starting from 000…1 (most 

negative) to 111…10 (most positive).
• Actual value = binary value – 127

00000001 1 – 127 = -126
00000010 2 – 127 = -125

… …
11111101 253 – 127 = 126
11111110 254 – 127 = 127
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Fraction

! ∗ 2$
• We could just encode whatever x is in the fraction field.  But there’s a trick we 

can use to make the most out of the bits we have.
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An Interesting Observation
In Base 10:
42.4 x 105 = 4.24 x 106

324.5 x 105 = 3.245 x 107

0.624 x 105 = 6.24 x 104

In Base 2:
10.1 x 25 = 1.01 x 26

1011.1 x 25 = 1.0111 x 28

0.110 x 25 = 1.10 x 24

We tend to adjust the exponent 
until we get down to one place 
to the left of the decimal point.

Observation: in base 2, this 
means there is always a 1 to the 
left of the decimal point!
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Fraction

! ∗ 2$
• We can adjust this value to fit the format described previously.  Then, x will 

always be in the format 1.XXXXXXXXX…
• Therefore, in the fraction portion, we can encode just what is to the right of 

the decimal point!  This means we get one more digit for precision.

Value encoded = 1._[FRACTION BINARY DIGITS]_
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Practice

Sign Exponent Fraction

0 0 … 0 0 0 1 0 1 0 …

Is this number:
A) Greater than 0?
B) Less than 0?

Is this number:
A) Less than -1?
B) Between -1 and 1?
C) Greater than 1?
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Skipping Numbers
• We said that it’s not possible to represent all real numbers using a fixed-width 

representation.  What does this look like?
• https://www.h-schmidt.net/FloatConverter/IEEE754.html
• https://twitter.com/D_M_Gregory/status/1044008750162604032

https://www.h-schmidt.net/FloatConverter/IEEE754.html
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Let’s Get Real
What would be nice to have in a real number representation?
• Represent widest range of numbers possible 
• Flexible “floating” decimal point 
• Represent scientific notation numbers, e.g. 1.2 x 106 

• Still be able to compare quickly 
• Have more predictable over/under-flow behavior 



45

Representing Zero
• The float representation of zero is all zeros (with any value for the sign bit)

• This means there are two representations for zero! L

Sign Exponent Fraction

any All zeros All zeros
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Representing Small Numbers
• If the exponent is all zeros, we switch into “denormalized” mode.

• We now treat the exponent as -126, and the fraction as without the leading 1.
• This allows us to represent the smallest numbers as precisely as possible.

Sign Exponent Fraction

any All zeros Any
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Representing Exceptional Values
• If the exponent is all ones, and the fraction is all zeros, we have +- infinity.

• The sign bit indicates whether it is positive or negative infinity.
• Floats have built-in handling of over/underflow!
• Infinity + anything = infinity
• Negative infinity + negative anything = negative infinity
• Etc.

Sign Exponent Fraction

any All ones All zeros
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Representing Exceptional Values
• If the exponent is all ones, and the fraction is nonzero, we have Not a Number.

• NaN results from computations that produce an invalid mathematical result.
• Sqrt(negative)
• Infinity / infinity
• Infinity + -infinity
• Etc.

Sign Exponent Fraction

any 1 … … … … 1 Any nonzero
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Number Ranges
• 32-bit integer (type int):

› -2,147,483,648 to 2147483647
› Every integer in that range can be represented 

• 64-bit integer (type long):
› −9,223,372,036,854,775,808 to 9,223,372,036,854,775,807 

• 32-bit floating point (type float):
• ~1.7 x10-38 to ~3.4 x1038

• Not all numbers in the range can be represented (obviously—uncountable) 

• Not even all integers in the range can be represented! 

• Gaps can get quite large! (larger the exponent, larger the gap between successive 
fraction values)

• 64-bit floating point (type double): 
• ~2 x10-308 to ~2 x10308 
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Floating Point Arithmetic
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Floating Point Arithmetic

What does this number look like 
in 32-bit IEEE format?
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Floating Point Arithmetic

Step 1: convert from base 10 to binary

What is 100000000000000000003.14 in binary?  Let’s find out!
http://web.stanford.edu/class/archive/cs/cs107/cs107.1184/float/convert.html

1010110101111000111010111100010110101100011000100000000000000000011.0010001111010111000010100011…

http://web.stanford.edu/class/archive/cs/cs107/cs107.1184/float/convert.html
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Floating Point Arithmetic

Step 2: find most significant 1 and take the next 23 
digits for the fractional component, rounding if 
needed.

1 01011010111100011101100

1010110101111000111010111100010110101100011000100000000000000000011.0010001111010111000010100011…
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Floating Point Arithmetic

Step 3: find how many places we need to shift left
to put the number in 1.xxx format.  This fills in the 
exponent component.

66 shifts -> 66 + 127 = 193

1010110101111000111010111100010110101100011000100000000000000000011.0010001111010111000010100011…
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Floating Point Arithmetic

Step 4: if the sign is positive, the sign bit is 0.  
Otherwise, it’s 1.

Sign bit is 0.

1010110101111000111010111100010110101100011000100000000000000000011.0010001111010111000010100011…
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Floating Point Arithmetic
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Floating Point Arithmetic
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Floating Point Arithmetic

The rounding that happens during the calculation of 0.1 + 0.2 
produces a different number than 0.3!
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Floating Point Arithmetic
• http://geocar.sdf1.org/numbers.html
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Let’s Get Real
What would be nice to have in a real number representation?
• Represent widest range of numbers possible 
• Flexible “floating” decimal point 
• Represent scientific notation numbers, e.g. 1.2 x 106 

• Still be able to compare quickly 
• Have more predictable over/under-flow behavior 
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Floats Summary
• IEEE Floating Point is a carefully-thought-out standard.  It’s complicated, but 

engineered for their goals.
• Floats have an extremely wide range, but cannot represent every number in 

that range.
• Some approximation and rounding may occur!  This means you definitely don’t 

want to use floats e.g. for currency.
• Associativity does not hold for numbers far apart in the range
• Equality comparison operations are often unwise.
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Recap
• Recap: Generics with Function Pointers
• Representing real numbers
• Fixed Point
• Break: Announcements
• Floating Point

Next time: assembly language


