
1
This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Marty Stepp, Cynthia Lee, Chris Gregg, and others.

CS107, Lecture 11
Introduction to Assembly

Reading: B&O 3.1-3.4

2

Learning Goals
• Learn what assembly language is and why it is important
• Be familiar with the format of human-readable assembly
• Understand the x86 Instruction Set and how it moves data around

3

Plan For Today
• Overview: GCC and Assembly
• Demo: Looking at an executable
• Registers and The Assembly Level of Abstraction
• A Brief History
• Our First Assembly
• Break: Announcements
• The mov instruction

4

Plan For Today
• Overview: GCC and Assembly
• Demo: Looking at an executable
• Registers and The Assembly Level of Abstraction
• A Brief History
• Our First Assembly
• Break: Announcements
• The mov instruction

5

GCC
• GCC is the compiler that converts your human-readable code into machine-

readable instructions.
• C, and other languages, are high-level abstractions we use to write code

efficiently. But computers don’t really understand things like data structures,
variables, etc. Compilers are the translator!
• Pure machine code is 1s and 0s – everything is bits, even your programs! But

we can read it in a human-readable form called assembly. (Engineers used to
write code in assembly before C).
• There may be multiple assembly instructions needed to encode a single C

instruction.
• We’re going to go behind the curtain to see what the assembly code for our

programs looks like.

6

Demo: Looking At An
Executable (objdump -d)

7

Plan For Today
• Overview: GCC and Assembly
• Demo: Looking at an executable
• Registers and The Assembly Level of Abstraction
• A Brief History
• Our First Assembly
• Break: Announcements
• The mov instruction

8

Assembly Abstraction
• C abstracts away the low level details of machine code. It lets us work using

functions, variables, variable types, etc.
• C and other languages let us write code that works on most machines.
• Assembly code is just bytes! No variable types, no type checking, etc.
• Assembly/machine code is very machine-specific.
• What is the level of abstraction for assembly code?

9

Registers

%rax

10

Registers

%rax

%rbx

%rcx

%rdx

%rsi

%rdi

%rbp

%rsp

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15

11

Registers
• A register is a 64-bit space inside the processor.
• There are 16 registers available, each with a unique name.
• Registers are like “scratch paper” for the processor. Data being calculated or

manipulated is moved to registers first. Operations are performed on
registers.
• Registers also hold parameters and return values for functions.
• Registers are extremely fast memory!
• Processor instructions consist mostly of moving data into/out of registers and

performing arithmetic on them. This is the level of logic your program must be
in to execute!

12

Machine-Level Code
• Assembly instructions manipulate these registers. For example:
• One instruction adds two numbers in registers
• One instruction transfers data from a register to memory
• One instruction transfers data from memory to a register

13

Computer Architecture

14

GCC And Assembly
• GCC compiles your program – it lays out memory on the stack and heap and

generates assembly instructions to access and do calculations on those
memory locations.
• Here’s what the “assembly-level abstraction” of C code might look like:

C Assembly Abstraction

int sum = x + y; 1) Copy x into register 1
2) Copy y into register 2
3) Add register 2 to register 1
4) Write register 1 to memory for sum

15

Plan For Today
• Overview: GCC and Assembly
• Demo: Looking at an executable
• Registers and The Assembly Level of Abstraction
• A Brief History
• Our First Assembly
• Break: Announcements
• The mov instruction

16

Assembly
• We are going to learn the x86-64 instruction set architecture. This instruction

set is used by Intel and AMD processors.

• There are many other instruction sets: ARM, MIPS, etc.

• Intel originally designed their instruction set back in 1978. It has evolved
significantly since then, but has aggressively preserved backwards
compatibility.

• Originally 16 bit processor -> then 32 -> now 64 bit. This dictated the register
sizes (and even register names).

17

Plan For Today
• Overview: GCC and Assembly
• Demo: Looking at an executable
• Registers and The Assembly Level of Abstraction
• A Brief History
• Our First Assembly
• Break: Announcements
• The mov instruction

18

Our First Assembly
int sum_array(int arr[], int nelems) {

int sum = 0;
for (int i = 0; i < nelems; i++) {

sum += arr[i];
}
return sum;

}

What does this look like in assembly?

19

Our First Assembly
00000000004005b6 <sum_array>:

4005b6: ba 00 00 00 00 mov $0x0,%edx
4005bb: b8 00 00 00 00 mov $0x0,%eax
4005c0: eb 09 jmp 4005cb <sum_array+0x15>
4005c2: 48 63 ca movslq %edx,%rcx
4005c5: 03 04 8f add (%rdi,%rcx,4),%eax
4005c8: 83 c2 01 add $0x1,%edx
4005cb: 39 f2 cmp %esi,%edx
4005cd: 7c f3 jl 4005c2 <sum_array+0xc>
4005cf: f3 c3 repz retq

20

Our First Assembly
00000000004005b6 <sum_array>:

4005b6: ba 00 00 00 00 mov $0x0,%edx
4005bb: b8 00 00 00 00 mov $0x0,%eax
4005c0: eb 09 jmp 4005cb <sum_array+0x15>
4005c2: 48 63 ca movslq %edx,%rcx
4005c5: 03 04 8f add (%rdi,%rcx,4),%eax
4005c8: 83 c2 01 add $0x1,%edx
4005cb: 39 f2 cmp %esi,%edx
4005cd: 7c f3 jl 4005c2 <sum_array+0xc>
4005cf: f3 c3 repz retq

This is the name of the function (same
as C) and the memory address where
the code for this function starts.

21

Our First Assembly
00000000004005b6 <sum_array>:

4005b6: ba 00 00 00 00 mov $0x0,%edx
4005bb: b8 00 00 00 00 mov $0x0,%eax
4005c0: eb 09 jmp 4005cb <sum_array+0x15>
4005c2: 48 63 ca movslq %edx,%rcx
4005c5: 03 04 8f add (%rdi,%rcx,4),%eax
4005c8: 83 c2 01 add $0x1,%edx
4005cb: 39 f2 cmp %esi,%edx
4005cd: 7c f3 jl 4005c2 <sum_array+0xc>
4005cf: f3 c3 repz retq

These are the memory addresses where
each of the instructions live. Sequential
instructions are sequential in memory.

22

Our First Assembly
00000000004005b6 <sum_array>:

4005b6: ba 00 00 00 00 mov $0x0,%edx
4005bb: b8 00 00 00 00 mov $0x0,%eax
4005c0: eb 09 jmp 4005cb <sum_array+0x15>
4005c2: 48 63 ca movslq %edx,%rcx
4005c5: 03 04 8f add (%rdi,%rcx,4),%eax
4005c8: 83 c2 01 add $0x1,%edx
4005cb: 39 f2 cmp %esi,%edx
4005cd: 7c f3 jl 4005c2 <sum_array+0xc>
4005cf: f3 c3 repz retq

This is the assembly code:
“human-readable” versions of
each machine code instruction.

23

Our First Assembly
00000000004005b6 <sum_array>:

4005b6: ba 00 00 00 00 mov $0x0,%edx
4005bb: b8 00 00 00 00 mov $0x0,%eax
4005c0: eb 09 jmp 4005cb <sum_array+0x15>
4005c2: 48 63 ca movslq %edx,%rcx
4005c5: 03 04 8f add (%rdi,%rcx,4),%eax
4005c8: 83 c2 01 add $0x1,%edx
4005cb: 39 f2 cmp %esi,%edx
4005cd: 7c f3 jl 4005c2 <sum_array+0xc>
4005cf: f3 c3 repz retq

This is the machine code: raw
hexadecimal instructions,
representing binary as read by the
computer. Different instructions may
be different byte lengths.

24

Our First Assembly
00000000004005b6 <sum_array>:

4005b6: ba 00 00 00 00 mov $0x0,%edx
4005bb: b8 00 00 00 00 mov $0x0,%eax
4005c0: eb 09 jmp 4005cb <sum_array+0x15>
4005c2: 48 63 ca movslq %edx,%rcx
4005c5: 03 04 8f add (%rdi,%rcx,4),%eax
4005c8: 83 c2 01 add $0x1,%edx
4005cb: 39 f2 cmp %esi,%edx
4005cd: 7c f3 jl 4005c2 <sum_array+0xc>
4005cf: f3 c3 repz retq

25

Our First Assembly
00000000004005b6 <sum_array>:

4005b6: ba 00 00 00 00 mov $0x0,%edx
4005bb: b8 00 00 00 00 mov $0x0,%eax
4005c0: eb 09 jmp 4005cb <sum_array+0x15>
4005c2: 48 63 ca movslq %edx,%rcx
4005c5: 03 04 8f add (%rdi,%rcx,4),%eax
4005c8: 83 c2 01 add $0x1,%edx
4005cb: 39 f2 cmp %esi,%edx
4005cd: 7c f3 jl 4005c2 <sum_array+0xc>
4005cf: f3 c3 repz retq

Each instruction has an
operation name (“opcode”).

26

Our First Assembly
00000000004005b6 <sum_array>:

4005b6: ba 00 00 00 00 mov $0x0,%edx
4005bb: b8 00 00 00 00 mov $0x0,%eax
4005c0: eb 09 jmp 4005cb <sum_array+0x15>
4005c2: 48 63 ca movslq %edx,%rcx
4005c5: 03 04 8f add (%rdi,%rcx,4),%eax
4005c8: 83 c2 01 add $0x1,%edx
4005cb: 39 f2 cmp %esi,%edx
4005cd: 7c f3 jl 4005c2 <sum_array+0xc>
4005cf: f3 c3 repz retqEach instruction can also have

arguments (“operands”).

27

Our First Assembly
00000000004005b6 <sum_array>:

4005b6: ba 00 00 00 00 mov $0x0,%edx
4005bb: b8 00 00 00 00 mov $0x0,%eax
4005c0: eb 09 jmp 4005cb <sum_array+0x15>
4005c2: 48 63 ca movslq %edx,%rcx
4005c5: 03 04 8f add (%rdi,%rcx,4),%eax
4005c8: 83 c2 01 add $0x1,%edx
4005cb: 39 f2 cmp %esi,%edx
4005cd: 7c f3 jl 4005c2 <sum_array+0xc>
4005cf: f3 c3 repz retq

$[number] means a constant
value (e.g. 1 here).

28

Our First Assembly
00000000004005b6 <sum_array>:

4005b6: ba 00 00 00 00 mov $0x0,%edx
4005bb: b8 00 00 00 00 mov $0x0,%eax
4005c0: eb 09 jmp 4005cb <sum_array+0x15>
4005c2: 48 63 ca movslq %edx,%rcx
4005c5: 03 04 8f add (%rdi,%rcx,4),%eax
4005c8: 83 c2 01 add $0x1,%edx
4005cb: 39 f2 cmp %esi,%edx
4005cd: 7c f3 jl 4005c2 <sum_array+0xc>
4005cf: f3 c3 repz retq

%[name] means a register
(e.g. edx here).

29

Plan For Today
• Overview: GCC and Assembly
• Demo: Looking at an executable
• Registers and The Assembly Level of Abstraction
• A Brief History
• Our First Assembly
• Break: Announcements
• The mov instruction

30

Announcements
• TreeHacks hackathon this weekend –

register online if you’d like to attend!

31

Plan For Today
• Overview: GCC and Assembly
• Demo: Looking at an executable
• Registers and The Assembly Level of Abstraction
• A Brief History
• Our First Assembly
• Break: Announcements
• The mov instruction

32

mov
The mov instruction copies bytes from one place to another.

mov src,dst

The src and dst can each be one of:
• Immediate (constant value, like a number)
• Register
• Memory Location (at most one of src, dst)

33

Operand Forms

34

Memory Location Syntax
Syntax Meaning

0x104 Address 0x104 (no $)

(%rax) Address in %rax

4(%rax) Address in %rax, plus 4

(%rax, %rdx) Sum of values in %rax and %rdx

4(%rax, %rdx) Sum of values in %rax and %rdx, plus 4

(, %rcx, 4) Address in %rcx, times 4 (multiplier can be 1,
2, 4, 8)

(%rax, %rcx, 2) Value in %rax, plus 2 times address in %rcx

8(%rax, %rcx, 2) Value in %rax, plus 2 times address in %rcx,
plus 8

35

Memory Location Syntax
Syntax Meaning

0x104 Address 0x104 (no $)

(%rax) Address in %rax

4(%rax) Address in %rax, plus 4

(%rax, %rdx) Sum of values in %rax and %rdx

4(%rax, %rdx) Sum of values in %rax and %rdx, plus 4

(, %rcx, 4) Address in %rcx, times 4 (multiplier can be 1,
2, 4, 8)

(%rax, %rcx, 2) Value in %rax, plus 2 times address in %rcx

8(%rax, %rcx, 2) Value in %rax, plus 2 times address in %rcx,
plus 8

36

Memory Location Syntax
Syntax Meaning

0x104 Address 0x104 (no $)

(%rax) Address in %rax

4(%rax) Address in %rax, plus 4

(%rax, %rdx) Sum of values in %rax and %rdx

4(%rax, %rdx) Sum of values in %rax and %rdx, plus 4

(, %rcx, 4) Address in %rcx, times 4 (multiplier can be 1,
2, 4, 8)

(%rax, %rcx, 2) Value in %rax, plus 2 times address in %rcx

8(%rax, %rcx, 2) Value in %rax, plus 2 times address in %rcx,
plus 8

37

Memory Location Syntax
Syntax Meaning

0x104 Address 0x104 (no $)

(%rax) Address in %rax

4(%rax) Address in %rax, plus 4

(%rax, %rdx) Sum of values in %rax and %rdx

4(%rax, %rdx) Sum of values in %rax and %rdx, plus 4

(, %rcx, 4) Address in %rcx, times 4 (multiplier can be 1,
2, 4, 8)

(%rax, %rcx, 2) Value in %rax, plus 2 times address in %rcx

8(%rax, %rcx, 2) Value in %rax, plus 2 times address in %rcx,
plus 8

38

Memory Location Syntax
Syntax Meaning

0x104 Address 0x104 (no $)

(%rax) Address in %rax

4(%rax) Address in %rax, plus 4

(%rax, %rdx) Sum of values in %rax and %rdx

4(%rax, %rdx) Sum of values in %rax and %rdx, plus 4

(, %rcx, 4) Address in %rcx, times 4 (multiplier can be 1,
2, 4, 8)

(%rax, %rcx, 2) Value in %rax, plus 2 times address in %rcx

8(%rax, %rcx, 2) Value in %rax, plus 2 times address in %rcx,
plus 8

39

Memory Location Syntax
Syntax Meaning

0x104 Address 0x104 (no $)

(%rax) Address in %rax

4(%rax) Address in %rax, plus 4

(%rax, %rdx) Sum of values in %rax and %rdx

4(%rax, %rdx) Sum of values in %rax and %rdx, plus 4

(, %rcx, 4) Address in %rcx, times 4 (multiplier can be 1,
2, 4, 8)

(%rax, %rcx, 2) Value in %rax, plus 2 times address in %rcx

8(%rax, %rcx, 2) Value in %rax, plus 2 times address in %rcx,
plus 8

40

Memory Location Syntax
Syntax Meaning

0x104 Address 0x104 (no $)

(%rax) Address in %rax

4(%rax) Address in %rax, plus 4

(%rax, %rdx) Sum of values in %rax and %rdx

4(%rax, %rdx) Sum of values in %rax and %rdx, plus 4

(, %rcx, 4) Address in %rcx, times 4 (multiplier can be 1,
2, 4, 8)

(%rax, %rcx, 2) Value in %rax, plus 2 times address in %rcx

8(%rax, %rcx, 2) Value in %rax, plus 2 times address in %rcx,
plus 8

41

Memory Location Syntax
Syntax Meaning

0x104 Address 0x104 (no $)

(%rax) Address in %rax

4(%rax) Address in %rax, plus 4

(%rax, %rdx) Sum of values in %rax and %rdx

4(%rax, %rdx) Sum of values in %rax and %rdx, plus 4

(, %rcx, 4) Address in %rcx, times 4 (multiplier can be 1,
2, 4, 8)

(%rax, %rcx, 2) Value in %rax, plus 2 times address in %rcx

8(%rax, %rcx, 2) Value in %rax, plus 2 times address in %rcx,
plus 8

42

Memory Location Syntax
Syntax Meaning

0x104 Address 0x104 (no $)

(%rax) Address in %rax

4(%rax) Address in %rax, plus 4

(%rax, %rdx) Sum of values in %rax and %rdx

4(%rax, %rdx) Sum of values in %rax and %rdx, plus 4

(, %rcx, 4) Address in %rcx, times 4 (multiplier can be 1,
2, 4, 8)

(%rax, %rcx, 2) Value in %rax, plus 2 times address in %rcx

8(%rax, %rcx, 2) Value in %rax, plus 2 times address in %rcx,
plus 8

43

Practice With Operand Forms

44

Practice With Operand Forms

45

Recap
• Overview: GCC and Assembly
• Demo: Looking at an executable
• Registers and The Assembly Level of Abstraction
• A Brief History
• Our First Assembly
• Break: Announcements
• The mov instruction

Next time: diving deeper into assembly

