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CS107, Lecture 11
Introduction to Assembly

Reading: B&O 3.1-3.4
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Learning Goals
• Learn what assembly language is and why it is important
• Be familiar with the format of human-readable assembly
• Understand the x86 Instruction Set and how it moves data around
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Plan For Today
• Overview: GCC and Assembly
• Demo: Looking at an executable
• Registers and The Assembly Level of Abstraction
• A Brief History
• Our First Assembly
• Break: Announcements
• The mov instruction
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GCC
• GCC is the compiler that converts your human-readable code into machine-

readable instructions.
• C, and other languages, are high-level abstractions we use to write code 

efficiently.  But computers don’t really understand things like data structures, 
variables, etc.  Compilers are the translator!
• Pure machine code is 1s and 0s – everything is bits, even your programs!  But 

we can read it in a human-readable form called assembly.  (Engineers used to 
write code in assembly before C).
• There may be multiple assembly instructions needed to encode a single C 

instruction.
• We’re going to go behind the curtain to see what the assembly code for our 

programs looks like.
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Demo: Looking At An 
Executable (objdump -d)



7

Plan For Today
• Overview: GCC and Assembly
• Demo: Looking at an executable
• Registers and The Assembly Level of Abstraction
• A Brief History
• Our First Assembly
• Break: Announcements
• The mov instruction



8

Assembly Abstraction
• C abstracts away the low level details of machine code.  It lets us work using 

functions, variables, variable types, etc.
• C and other languages let us write code that works on most machines.
• Assembly code is just bytes!  No variable types, no type checking, etc.
• Assembly/machine code is very machine-specific.
• What is the level of abstraction for assembly code?
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Registers

%rax
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Registers

%rax

%rbx

%rcx

%rdx

%rsi

%rdi

%rbp

%rsp

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15
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Registers
• A register is a 64-bit space inside the processor.  
• There are 16 registers available, each with a unique name.
• Registers are like “scratch paper” for the processor.  Data being calculated or 

manipulated is moved to registers first.  Operations are performed on 
registers.
• Registers also hold parameters and return values for functions.
• Registers are extremely fast memory!
• Processor instructions consist mostly of moving data into/out of registers and 

performing arithmetic on them.  This is the level of logic your program must be 
in to execute!
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Machine-Level Code
• Assembly instructions manipulate these registers.  For example:
• One instruction adds two numbers in registers
• One instruction transfers data from a register to memory
• One instruction transfers data from memory to a register
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Computer Architecture
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GCC And Assembly
• GCC compiles your program – it lays out memory on the stack and heap and 

generates assembly instructions to access and do calculations on those 
memory locations.
• Here’s what the “assembly-level abstraction” of C code might look like:

C Assembly Abstraction

int sum = x + y; 1) Copy x into register 1
2) Copy y into register 2
3) Add register 2 to register 1
4) Write register 1 to memory for sum
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Assembly
• We are going to learn the x86-64 instruction set architecture.  This instruction 

set is used by Intel and AMD processors.

• There are many other instruction sets: ARM, MIPS, etc.

• Intel originally designed their instruction set back in 1978.  It has evolved 
significantly since then, but has aggressively preserved backwards 
compatibility.

• Originally 16 bit processor -> then 32 -> now 64 bit.  This dictated the register 
sizes (and even register names).
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Our First Assembly
int sum_array(int arr[], int nelems) {

int sum = 0;
for (int i = 0; i < nelems; i++) {

sum += arr[i];
}
return sum;

}

What does this look like in assembly?
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Our First Assembly
00000000004005b6 <sum_array>:

4005b6:    ba 00 00 00 00 mov $0x0,%edx
4005bb:    b8 00 00 00 00 mov $0x0,%eax
4005c0:    eb 09 jmp 4005cb <sum_array+0x15>
4005c2:    48 63 ca movslq %edx,%rcx
4005c5:    03 04 8f add (%rdi,%rcx,4),%eax
4005c8:    83 c2 01 add $0x1,%edx
4005cb:    39 f2 cmp %esi,%edx
4005cd:    7c f3 jl 4005c2 <sum_array+0xc>
4005cf:    f3 c3 repz retq
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Our First Assembly
00000000004005b6 <sum_array>:

4005b6:    ba 00 00 00 00 mov $0x0,%edx
4005bb:    b8 00 00 00 00 mov $0x0,%eax
4005c0:    eb 09 jmp 4005cb <sum_array+0x15>
4005c2:    48 63 ca movslq %edx,%rcx
4005c5:    03 04 8f add (%rdi,%rcx,4),%eax
4005c8:    83 c2 01 add $0x1,%edx
4005cb:    39 f2 cmp %esi,%edx
4005cd:    7c f3 jl 4005c2 <sum_array+0xc>
4005cf:    f3 c3 repz retq

This is the name of the function (same 
as C) and the memory address where 
the code for this function starts.
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Our First Assembly
00000000004005b6 <sum_array>:

4005b6:    ba 00 00 00 00 mov $0x0,%edx
4005bb:    b8 00 00 00 00 mov $0x0,%eax
4005c0:    eb 09 jmp 4005cb <sum_array+0x15>
4005c2:    48 63 ca movslq %edx,%rcx
4005c5:    03 04 8f add (%rdi,%rcx,4),%eax
4005c8:    83 c2 01 add $0x1,%edx
4005cb:    39 f2 cmp %esi,%edx
4005cd:    7c f3 jl 4005c2 <sum_array+0xc>
4005cf:    f3 c3 repz retq

These are the memory addresses where 
each of the instructions live.  Sequential 
instructions are sequential in memory.
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Our First Assembly
00000000004005b6 <sum_array>:

4005b6:    ba 00 00 00 00 mov $0x0,%edx
4005bb:    b8 00 00 00 00 mov $0x0,%eax
4005c0:    eb 09 jmp 4005cb <sum_array+0x15>
4005c2:    48 63 ca movslq %edx,%rcx
4005c5:    03 04 8f add (%rdi,%rcx,4),%eax
4005c8:    83 c2 01 add $0x1,%edx
4005cb:    39 f2 cmp %esi,%edx
4005cd:    7c f3 jl 4005c2 <sum_array+0xc>
4005cf:    f3 c3 repz retq

This is the assembly code: 
“human-readable” versions of 
each machine code instruction.
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Our First Assembly
00000000004005b6 <sum_array>:

4005b6:    ba 00 00 00 00 mov $0x0,%edx
4005bb: b8 00 00 00 00 mov $0x0,%eax
4005c0: eb 09 jmp 4005cb <sum_array+0x15>
4005c2: 48 63 ca movslq %edx,%rcx
4005c5: 03 04 8f add (%rdi,%rcx,4),%eax
4005c8: 83 c2 01 add $0x1,%edx
4005cb: 39 f2 cmp %esi,%edx
4005cd: 7c f3 jl 4005c2 <sum_array+0xc>
4005cf: f3 c3 repz retq

This is the machine code: raw 
hexadecimal instructions, 
representing binary as read by the 
computer.  Different instructions may 
be different byte lengths.
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Our First Assembly
00000000004005b6 <sum_array>:

4005b6:    ba 00 00 00 00 mov $0x0,%edx
4005bb:    b8 00 00 00 00 mov $0x0,%eax
4005c0:    eb 09 jmp 4005cb <sum_array+0x15>
4005c2:    48 63 ca movslq %edx,%rcx
4005c5:    03 04 8f add (%rdi,%rcx,4),%eax
4005c8:    83 c2 01 add $0x1,%edx
4005cb:    39 f2 cmp %esi,%edx
4005cd:    7c f3 jl 4005c2 <sum_array+0xc>
4005cf:    f3 c3 repz retq
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Our First Assembly
00000000004005b6 <sum_array>:

4005b6:    ba 00 00 00 00 mov $0x0,%edx
4005bb:    b8 00 00 00 00 mov $0x0,%eax
4005c0:    eb 09 jmp 4005cb <sum_array+0x15>
4005c2:    48 63 ca movslq %edx,%rcx
4005c5:    03 04 8f add (%rdi,%rcx,4),%eax
4005c8:    83 c2 01 add $0x1,%edx
4005cb:    39 f2 cmp %esi,%edx
4005cd:    7c f3 jl 4005c2 <sum_array+0xc>
4005cf:    f3 c3 repz retq

Each instruction has an 
operation name (“opcode”).
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Our First Assembly
00000000004005b6 <sum_array>:

4005b6:    ba 00 00 00 00 mov $0x0,%edx
4005bb:    b8 00 00 00 00 mov $0x0,%eax
4005c0:    eb 09 jmp 4005cb <sum_array+0x15>
4005c2:    48 63 ca movslq %edx,%rcx
4005c5:    03 04 8f add (%rdi,%rcx,4),%eax
4005c8:    83 c2 01 add $0x1,%edx
4005cb:    39 f2 cmp %esi,%edx
4005cd:    7c f3 jl 4005c2 <sum_array+0xc>
4005cf:    f3 c3 repz retqEach instruction can also have 

arguments (“operands”).
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Our First Assembly
00000000004005b6 <sum_array>:

4005b6:    ba 00 00 00 00 mov $0x0,%edx
4005bb:    b8 00 00 00 00 mov $0x0,%eax
4005c0:    eb 09 jmp 4005cb <sum_array+0x15>
4005c2:    48 63 ca movslq %edx,%rcx
4005c5:    03 04 8f add (%rdi,%rcx,4),%eax
4005c8:    83 c2 01 add $0x1,%edx
4005cb:    39 f2 cmp %esi,%edx
4005cd:    7c f3 jl 4005c2 <sum_array+0xc>
4005cf:    f3 c3 repz retq

$[number] means a constant 
value (e.g. 1 here).
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Our First Assembly
00000000004005b6 <sum_array>:

4005b6:    ba 00 00 00 00 mov $0x0,%edx
4005bb:    b8 00 00 00 00 mov $0x0,%eax
4005c0:    eb 09 jmp 4005cb <sum_array+0x15>
4005c2:    48 63 ca movslq %edx,%rcx
4005c5:    03 04 8f add (%rdi,%rcx,4),%eax
4005c8:    83 c2 01 add $0x1,%edx
4005cb:    39 f2 cmp %esi,%edx
4005cd:    7c f3 jl 4005c2 <sum_array+0xc>
4005cf:    f3 c3 repz retq

%[name] means a register 
(e.g. edx here).
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Plan For Today
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• Demo: Looking at an executable
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Announcements
• TreeHacks hackathon this weekend –

register online if you’d like to attend!
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mov
The mov instruction copies bytes from one place to another.

mov src,dst

The src and dst can each be one of:
• Immediate (constant value, like a number)
• Register
• Memory Location (at most one of src, dst)
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Operand Forms
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Memory Location Syntax
Syntax Meaning

0x104 Address 0x104 (no $)

(%rax) Address in %rax

4(%rax) Address in %rax, plus 4

(%rax, %rdx) Sum of values in %rax and %rdx

4(%rax, %rdx) Sum of values in %rax and %rdx, plus 4

(, %rcx, 4) Address in %rcx, times 4 (multiplier can be 1, 
2, 4, 8)

(%rax, %rcx, 2) Value in %rax, plus 2 times address in %rcx

8(%rax, %rcx, 2) Value in %rax, plus 2 times address in %rcx, 
plus 8
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Practice With Operand Forms
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Practice With Operand Forms
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Recap
• Overview: GCC and Assembly
• Demo: Looking at an executable
• Registers and The Assembly Level of Abstraction
• A Brief History
• Our First Assembly
• Break: Announcements
• The mov instruction

Next time: diving deeper into assembly


