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Learning Goals

* Learn what assembly language is and why it is important
* Be familiar with the format of human-readable assembly
* Understand the x86 Instruction Set and how it moves data around



Plan For Today

* Overview: GCC and Assembly

* Demo: Looking at an executable

* Registers and The Assembly Level of Abstraction
* A Brief History

* Our First Assembly

* Break: Announcements

* The mov instruction



Plan For Today

* Overview: GCC and Assembly



* GCC is the compiler that converts your human-readable code into machine-
readable instructions.

* C, and other languages, are high-level abstractions we use to write code
efficiently. But computers don’t really understand things like data structures,
variables, etc. Compilers are the translator!

* Pure machine code is 1s and Os — everything is bits, even your programs! But
we can read it in a human-readable form called assembly. (Engineers used to

write code in assembly before C).

* There may be multiple assembly instructions needed to encode a single C
instruction.

* We’re going to go behind the curtain to see what the assembly code for our
programs looks like.



Demo: Looking At An
Executable (objdump -d)




Plan For Today

* Registers and The Assembly Level of Abstraction



Assembly Abstraction

* C abstracts away the low level details of machine code. It lets us work using
functions, variables, variable types, etc.

* C and other languages let us write code that works on most machines.
* Assembly code is just bytes! No variable types, no type checking, etc.
* Assembly/machine code is very machine-specific.

* What is the level of abstraction for assembly code?
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Registers

* A register is a 64-bit space inside the processor.
* There are 16 registers available, each with a unigue name.

e Registers are like “scratch paper” for the processor. Data being calculated or
manipulated is moved to registers first. Operations are performed on
registers.

* Registers also hold parameters and return values for functions.
* Registers are extremely fast memory!

* Processor instructions consist mostly of moving data into/out of registers and
performing arithmetic on them. This is the level of logic your program must be
in to execute!
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Machine-Level Code

* Assembly instructions manipulate these registers. For example:
* One instruction adds two numbers in registers
* One instruction transfers data from a register to memory
* One instruction transfers data from memory to a register
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GCC And Assembly

* GCC compiles your program — it lays out memory on the stack and heap and
generates assembly instructions to access and do calculations on those

memory locations.
* Here’s what the “assembly-level abstraction” of C code might look like:

C Assembly Abstraction

1) Copy x into register 1

1nt sum = X + y; 2) Copyy into register 2

3) Add register 2 to register 1
4) Write register 1 to memory for sum
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Plan For Today

* A Brief History
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Assembly

* We are going to learn the x86-64 instruction set architecture. This instruction
set is used by Intel and AMD processors.

* There are many other instruction sets: ARM, MIPS, etc.

* Intel originally designed their instruction set back in 1978. It has evolved
significantly since then, but has aggressively preserved backwards
compatibility.

* Originally 16 bit processor -> then 32 -> now 64 bit. This dictated the register
sizes (and even register names).
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Plan For Today

* Our First Assembly
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Our First Assembly

int sum_array(int arr[], int nelems) {
int sum = 9;
for (int 1 = 0; 1 < nelems; i++) {
sum += arr[i];
}

return sum;

What does this look like in assembly?
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Our First Assembly

00000000004005b6 <sum_array>:

4005b6: ba 00 00 00 00 mov $0x0, %edx

4005bb: b8 00 00 00 00 mov $0x0, %eax

4005c0O: eb 09 jmp 4005cb <sum_array+0x15>
4005c2: 48 63 ca movslq %edx,%rcx

4005c5: 03 04 8f add (%rdi,%rcx,4),%eax
4005c8: 83 c2 01 add $0x1, %edx

4005cb: 39 f2 cmp %esi,%nedx

4005cd: 7¢ f3 jl 4005Cc2 <sum_array+0xc>

4005cT: 3 c3 repz retg
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Our First Assembly

00000000004005b6 <sum_array>;

\—'—l

This is the name of the function (same
as C) and the memory address where
the code for this function starts.
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Our First Assembly

00000000004005b6 <sum_array>:
4005b6:
4005bb :

4005cO:
4005c2: These are the memory addresses where

4005c¢5: each of the instructions live. Sequential

4005c8: : : o
4005ch: instructions are sequential in memory.

4005cd:
4005ct:
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Our First Assembly

00000000004005b6 <sum_array>:

This is the assembly code:
“human-readable” versions of
each machine code instruction.

mov $0x0, %edx

mov $0x0, %eax

jmp 4005cb <sum_array+0x15>
movslq %edx,%rcx

add (%rdi,%rcx,4),%eax

add $0x1, %edx

cmp %esi,nedx

jl 4005c2 <sum_array+0xc>
repz retq
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Our First Assembly

00000000004005b6 <sum_array>:
ba 00 00 00 00

bg 00 00 00 00 This is the machine code: raw

eb 09 : : :

48 63 ca hexadecmal |n.struct|ons,

03 04 8f representing binary as read by the

83 c2 0l computer. Different instructions may
;2 g be different byte lengths.

3 ¢3
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Our First Assembly

00000000004005b6 <sum_array>:

4005b6: ba 00 00 00 00 mov $0x0, %edx

4005bb: b8 00 00 00 00 mov $0x0, %eax

4005c0O: eb 09 jmp 4005cb <sum_array+0x15>
4005c2: 48 63 ca movslq %edx,%rcx

4005c5: 03 04 8f add (%rdi,%rcx,4),%eax
4005c8: 83 c2 01 add $0x1, %edx

4005cb: 39 f2 cmp %esi,%nedx

4005cd: 7¢ f3 jl 4005Cc2 <sum_array+0xc>

4005cT: 3 c3 repz retg
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Our First Assembly

00000000004005b6 <sum_array>:

4005c8: 83 c2 01 add $0x1, %edx

Each instruction has an
operation name (“opcode”).
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Our First Assembly

00000000004005b6 <sum_array>:

4005c8: 83 c2 01 add $0x1, %edx

Each instruction can also have
arguments (“operands”).
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Our First Assembly

00000000004005b6 <sum_array>:

4005c8: 83 c2 01 add $0x1, %edx

S[number] means a constant
value (e.g. 1 here).
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Our First Assembly

00000000004005b6 <sum_array>:

4005c8: 83 c2 01 add $0x1, %edx

%[name] means a register
(e.g. edx here).
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Plan For Today

* Break: Announcements
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Announcements

* TreeHacks hackathon this weekend —
register online if you'd like to attend!

treehacks 2019

Friday 2/15 - Sunday 2/17 @ Huang

Join us for the best 36 hours of your life!

We'll provide the space, mentors, workshops, and tech you need to

build anything you can dream up BIElle (el R X [(-E1d {TeTe B

performances, and people.

Come out to Huang to Elylel have fun along the way &=
with...

* Yoga e Lightsaber battles e Karaoke  * Free swag
® Puppies ® Acai bowls e Juggling * ~$100k in prizes

...and more, TreeHacks will be the best weekend of your life,
guaranteed!

Interested in PELIFREGRENGEIEELRNIEIAE ? Check out our verticals:

Sign up now at !

It'll take <2 minutes, we promise! All Stanford students get in :)
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Plan For Today

* The mov instruction
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The mov instruction copies bytes from one place to another.

mov src,dst

The src and dst can each be one of:
* Immediate (constant value, like a number)
* Register

 Memory Location (at most one of src, dst)
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Operand Forms

Type Form Operand value Name
Immediate $Imm Imm Immediate
Register T, R[x,] Register
Memory Imm M[Imml] Absolute
Memory (ry) M[R[x,]] Indirect
Memory Imm(xry) M[Imm + R[x,]] Base + displacement
Memory (rp,x;) M[R[z;] + R[x;]] Indexed
Memory Imm(xy,x;) M[Imm + R[r] + R[x;]] Indexed
Memory (,r;,s) M[R[x;]- 5] Scaled indexed
Memory Imm(,x;,s) M[Imm + R[x;] - 5] Scaled indexed
Memory (rp,T;,5) MI[R[x,] + R[x;] - 5] Scaled indexed
Memory Imm(xy,x;,5) M[Imm + R[x,] + R[r;]-s]  Scaled indexed

Figure 3.3 Operand forms. Operands can denote immediate (constant) values, register
values, or values from memory. The scaling factor s must be either 1, 2, 4, or 8.
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Memory Location Syntax

Syntax Meaning



Memory Location Syntax

Syntax Meaning

Address 0x104 (no S)



Memory Location Syntax

Syntax

0x104

Meaning

Address 0x104 (no S)

(%rax)

Address in %rax




Memory Location Syntax

Syntax Meaning

0x104 Address 0x104 (no S)
(%rax) Address in %rax
4(%rax) Address in %rax, plus 4




Memory Location Syntax

Syntax Meaning

0x104 Address 0x104 (no S)

(%rax) Address in %rax

4(%rax) Address in %rax, plus 4
(%rax, %rdx) Sum of values in %rax and %rdx




Memory Location Syntax

Syntax Meaning

0x104 Address 0x104 (no S)

(%rax) Address in %rax

4(%rax) Address in %rax, plus 4
(%rax, %rdx) Sum of values in %rax and %rdx
4(%rax, %rdx) Sum of values in %rax and %rdx, plus 4




Memory Location Syntax

Syntax Meaning

0x104 Address 0x104 (no S)

(%rax) Address in %rax

4(%rax) Address in %rax, plus 4
(%rax, %rdx) Sum of values in %rax and %rdx

4(%rax, %rdx)

Sum of values in %rax and %rdx, plus 4

(, %rcx, 4)

Address in %rcx, times 4 (multiplier can be 1,
2,4, 8)




Memory Location Syntax

Syntax Meaning

0x104 Address 0x104 (no S)

(%rax) Address in %rax

4(%rax) Address in %rax, plus 4
(%rax, %rdx) Sum of values in %rax and %rdx

4(%rax, %rdx)

Sum of values in %rax and %rdx, plus 4

(, %rcx, 4)

Address in %rcx, times 4 (multiplier can be 1,
2,4, 8)

(%rax, %rcx, 2)

Value in %rax, plus 2 times address in %rcx



Memory Location Syntax

Syntax Meaning

0x104 Address 0x104 (no S)

(%rax) Address in %rax

4(%rax) Address in %rax, plus 4
(%rax, %rdx) Sum of values in %rax and %rdx

4(%rax, %rdx)

Sum of values in %rax and %rdx, plus 4

(, %rcx, 4)

Address in %rcx, times 4 (multiplier can be 1,
2,4, 8)

(%rax, %rcx, 2)

Value in %rax, plus 2 times address in %rcx

8(%rax, %rcx, 2)

Value in %rax, plus 2 times address in %rcx,
plus 8
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Practice With Operand Forms

Assume the following values are stored at the indicated memory addresses and registers:

Address Value Register Value
0x100 OxXFF grax 0x100
0x104 0xAB ¥rcx 0x1
0x108 0x13 Frdx 0x3
0x10C Ox11

Operand Value

Fill in the table to the right showing

: : grax
the values for the indicated operands. %104 —
_ $0x108
Reminder: ($rax)
4 (%rax)
Most general form: Imm(xp,xi,S) 9 (srax,3rdx)

Imm + R[xp] + R[ri] *s  260(%rcx,%rdx)
O0XFC(,%rcx,4)

Also: 260d = Ox104 (%rax, %rdx,4)
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Practice With Operand Forms

Assume the following values are stored at the indicated memory addresses and registers:

Address Value Register Value
0x100 O0xXFF srax 0x100
0x104 0xAB ¥rcx Ox1
0x108 0x13 grdx 0x3
0x10C 0x11

Operand Value Comment

Fill in the table to the right showing

C $rax 0x100 Reqgister
the values for the indicated operands. %104 0xnB  Absolute address
_ $0x108 0x108 Immediate
Reminder: (%rax) 0xFF  Address 0x100
4 (%rax) 0xAB Address 0x104
Most general form: Imm(xp,xi,S) 9(srax,srdx) O0xll  Address 0x10C

Imm + R[rs] + R[xi] *s 260 (%rcx,%rdx) 0x13  Address 0x108
O0XFC(,%rcx,4) OXFF Address 0x100

Also: 260d = Ox104 (%rax,srdx,4) O0xll  Address 0x10C
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Recap

* Overview: GCC and Assembly

* Demo: Looking at an executable

* Registers and The Assembly Level of Abstraction
* A Brief History

* Our First Assembly

* Break: Announcements

* The mov instruction

Next time: diving deeper into assembly
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