CS107, Lecture 11

Introduction to Assembly

Reading: B&O 3.1-3.4

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Marty Stepp, Cynthia Lee, Chris Gregg, and others.

Learning Goals

* Learn what assembly language is and why it is important
* Be familiar with the format of human-readable assembly
* Understand the x86 Instruction Set and how it moves data around

Plan For Today

* Overview: GCC and Assembly

* Demo: Looking at an executable

* Registers and The Assembly Level of Abstraction
* A Brief History

* Our First Assembly

* Break: Announcements

* The mov instruction

Plan For Today

* Overview: GCC and Assembly

* GCC is the compiler that converts your human-readable code into machine-
readable instructions.

* C, and other languages, are high-level abstractions we use to write code
efficiently. But computers don’t really understand things like data structures,
variables, etc. Compilers are the translator!

* Pure machine code is 1s and Os — everything is bits, even your programs! But
we can read it in a human-readable form called assembly. (Engineers used to

write code in assembly before C).

* There may be multiple assembly instructions needed to encode a single C
instruction.

* We’re going to go behind the curtain to see what the assembly code for our
programs looks like.

Demo: Looking At An
Executable (objdump -d)

Plan For Today

* Registers and The Assembly Level of Abstraction

Assembly Abstraction

* C abstracts away the low level details of machine code. It lets us work using
functions, variables, variable types, etc.

* C and other languages let us write code that works on most machines.
* Assembly code is just bytes! No variable types, no type checking, etc.
* Assembly/machine code is very machine-specific.

* What is the level of abstraction for assembly code?

%rax

|

%rax

|
|
|
|

%rbx

|
|
|
|

%rcx

|
|
|
|

%rdx

Registers

[

%rsi

%rdi

%rbp

Y%rsp

|
|

%Tr8

%Tr9

%Tr10

%r11

%Tr12

%Tr13

%Tr14

%Tr15

10

Registers

* A register is a 64-bit space inside the processor.
* There are 16 registers available, each with a unigue name.

e Registers are like “scratch paper” for the processor. Data being calculated or
manipulated is moved to registers first. Operations are performed on
registers.

* Registers also hold parameters and return values for functions.
* Registers are extremely fast memory!

* Processor instructions consist mostly of moving data into/out of registers and
performing arithmetic on them. This is the level of logic your program must be
in to execute!

11

Machine-Level Code

* Assembly instructions manipulate these registers. For example:
* One instruction adds two numbers in registers
* One instruction transfers data from a register to memory
* One instruction transfers data from memory to a register

12

Computer Architecture

CPU

Register file

PC |ALU

— [System bus Memory bus

s

| A | I/Q Main | “hello, world\n”
' bridge memoryl . .. code

JU

Expansion slots for
other devices such

Bus interface

USB ' Graphics Disk as network adapters
controller adapter controller
Mouse Keyboard Display ¢ — ‘ L
Disk | stored on disk

. ”~

13

GCC And Assembly

* GCC compiles your program — it lays out memory on the stack and heap and
generates assembly instructions to access and do calculations on those

memory locations.
* Here’s what the “assembly-level abstraction” of C code might look like:

C Assembly Abstraction

1) Copy x into register 1

1nt sum = X + y; 2) Copyy into register 2

3) Add register 2 to register 1
4) Write register 1 to memory for sum

14

Plan For Today

* A Brief History

15

Assembly

* We are going to learn the x86-64 instruction set architecture. This instruction
set is used by Intel and AMD processors.

* There are many other instruction sets: ARM, MIPS, etc.

* Intel originally designed their instruction set back in 1978. It has evolved
significantly since then, but has aggressively preserved backwards
compatibility.

* Originally 16 bit processor -> then 32 -> now 64 bit. This dictated the register
sizes (and even register names).

16

Plan For Today

* Our First Assembly

17

Our First Assembly

int sum_array(int arr[], int nelems) {
int sum = 9;
for (int 1 = 0; 1 < nelems; i++) {
sum += arr[i];
}

return sum;

What does this look like in assembly?

18

Our First Assembly

00000000004005b6 <sum_array>:

4005b6: ba 00 00 00 00 mov $0x0, %edx

4005bb: b8 00 00 00 00 mov $0x0, %eax

4005c0O: eb 09 jmp 4005cb <sum_array+0x15>
4005c2: 48 63 ca movslq %edx,%rcx

4005c5: 03 04 8f add (%rdi,%rcx,4),%eax
4005c8: 83 c2 01 add $0x1, %edx

4005cb: 39 f2 cmp %esi,%nedx

4005cd: 7¢ f3 jl 4005Cc2 <sum_array+0xc>

4005cT: 3 c3 repz retg

19

Our First Assembly

00000000004005b6 <sum_array>;

\—'—l

This is the name of the function (same
as C) and the memory address where
the code for this function starts.

20

Our First Assembly

00000000004005b6 <sum_array>:
4005b6:
4005bb :

4005cO:
4005c2: These are the memory addresses where

4005c¢5: each of the instructions live. Sequential

4005c8: : : o
4005ch: instructions are sequential in memory.

4005cd:
4005ct:

21

Our First Assembly

00000000004005b6 <sum_array>:

This is the assembly code:
“human-readable” versions of
each machine code instruction.

mov $0x0, %edx

mov $0x0, %eax

jmp 4005cb <sum_array+0x15>
movslq %edx,%rcx

add (%rdi,%rcx,4),%eax

add $0x1, %edx

cmp %esi,nedx

jl 4005c2 <sum_array+0xc>
repz retq

22

Our First Assembly

00000000004005b6 <sum_array>:
ba 00 00 00 00

bg 00 00 00 00 This is the machine code: raw

eb 09 : : :

48 63 ca hexadecmal |n.struct|ons,

03 04 8f representing binary as read by the

83 c2 0l computer. Different instructions may
;2 g be different byte lengths.

3 ¢3

23

Our First Assembly

00000000004005b6 <sum_array>:

4005b6: ba 00 00 00 00 mov $0x0, %edx

4005bb: b8 00 00 00 00 mov $0x0, %eax

4005c0O: eb 09 jmp 4005cb <sum_array+0x15>
4005c2: 48 63 ca movslq %edx,%rcx

4005c5: 03 04 8f add (%rdi,%rcx,4),%eax
4005c8: 83 c2 01 add $0x1, %edx

4005cb: 39 f2 cmp %esi,%nedx

4005cd: 7¢ f3 jl 4005Cc2 <sum_array+0xc>

4005cT: 3 c3 repz retg

24

Our First Assembly

00000000004005b6 <sum_array>:

4005c8: 83 c2 01 add $0x1, %edx

Each instruction has an
operation name (“opcode”).

25

Our First Assembly

00000000004005b6 <sum_array>:

4005c8: 83 c2 01 add $0x1, %edx

Each instruction can also have
arguments (“operands”).

26

Our First Assembly

00000000004005b6 <sum_array>:

4005c8: 83 c2 01 add $0x1, %edx

S[number] means a constant
value (e.g. 1 here).

27

Our First Assembly

00000000004005b6 <sum_array>:

4005c8: 83 c2 01 add $0x1, %edx

%[name] means a register
(e.g. edx here).

28

Plan For Today

* Break: Announcements

29

Announcements

* TreeHacks hackathon this weekend —
register online if you'd like to attend!

treehacks 2019

Friday 2/15 - Sunday 2/17 @ Huang

Join us for the best 36 hours of your life!

We'll provide the space, mentors, workshops, and tech you need to

build anything you can dream up BIElle (el R X [(-E1d {TeTe B

performances, and people.

Come out to Huang to Elylel have fun along the way &=
with...

* Yoga e Lightsaber battles e Karaoke * Free swag
® Puppies ® Acai bowls e Juggling * ~$100k in prizes

...and more, TreeHacks will be the best weekend of your life,
guaranteed!

Interested in PELIFREGRENGEIEELRNIEIAE ? Check out our verticals:

Sign up now at !

It'll take <2 minutes, we promise! All Stanford students get in :)

30

Plan For Today

* The mov instruction

31

The mov instruction copies bytes from one place to another.

mov src,dst

The src and dst can each be one of:
* Immediate (constant value, like a number)
* Register

 Memory Location (at most one of src, dst)

32

Operand Forms

Type Form Operand value Name
Immediate $Imm Imm Immediate
Register T, R[x,] Register
Memory Imm M[Imml] Absolute
Memory (ry) M[R[x,]] Indirect
Memory Imm(xry) M[Imm + R[x,]] Base + displacement
Memory (rp,x;) M[R[z;] + R[x;]] Indexed
Memory Imm(xy,x;) M[Imm + R[r] + R[x;]] Indexed
Memory (,r;,s) M[R[x;]- 5] Scaled indexed
Memory Imm(,x;,s) M[Imm + R[x;] - 5] Scaled indexed
Memory (rp,T;,5) MI[R[x,] + R[x;] - 5] Scaled indexed
Memory Imm(xy,x;,5) M[Imm + R[x,] + R[r;]-s] Scaled indexed

Figure 3.3 Operand forms. Operands can denote immediate (constant) values, register
values, or values from memory. The scaling factor s must be either 1, 2, 4, or 8.

33

Memory Location Syntax

Syntax Meaning

Memory Location Syntax

Syntax Meaning

Address 0x104 (no S)

Memory Location Syntax

Syntax

0x104

Meaning

Address 0x104 (no S)

(%rax)

Address in %rax

Memory Location Syntax

Syntax Meaning

0x104 Address 0x104 (no S)
(%rax) Address in %rax
4(%rax) Address in %rax, plus 4

Memory Location Syntax

Syntax Meaning

0x104 Address 0x104 (no S)

(%rax) Address in %rax

4(%rax) Address in %rax, plus 4
(%rax, %rdx) Sum of values in %rax and %rdx

Memory Location Syntax

Syntax Meaning

0x104 Address 0x104 (no S)

(%rax) Address in %rax

4(%rax) Address in %rax, plus 4
(%rax, %rdx) Sum of values in %rax and %rdx
4(%rax, %rdx) Sum of values in %rax and %rdx, plus 4

Memory Location Syntax

Syntax Meaning

0x104 Address 0x104 (no S)

(%rax) Address in %rax

4(%rax) Address in %rax, plus 4
(%rax, %rdx) Sum of values in %rax and %rdx

4(%rax, %rdx)

Sum of values in %rax and %rdx, plus 4

(, %rcx, 4)

Address in %rcx, times 4 (multiplier can be 1,
2,4, 8)

Memory Location Syntax

Syntax Meaning

0x104 Address 0x104 (no S)

(%rax) Address in %rax

4(%rax) Address in %rax, plus 4
(%rax, %rdx) Sum of values in %rax and %rdx

4(%rax, %rdx)

Sum of values in %rax and %rdx, plus 4

(, %rcx, 4)

Address in %rcx, times 4 (multiplier can be 1,
2,4, 8)

(%rax, %rcx, 2)

Value in %rax, plus 2 times address in %rcx

Memory Location Syntax

Syntax Meaning

0x104 Address 0x104 (no S)

(%rax) Address in %rax

4(%rax) Address in %rax, plus 4
(%rax, %rdx) Sum of values in %rax and %rdx

4(%rax, %rdx)

Sum of values in %rax and %rdx, plus 4

(, %rcx, 4)

Address in %rcx, times 4 (multiplier can be 1,
2,4, 8)

(%rax, %rcx, 2)

Value in %rax, plus 2 times address in %rcx

8(%rax, %rcx, 2)

Value in %rax, plus 2 times address in %rcx,
plus 8

42

Practice With Operand Forms

Assume the following values are stored at the indicated memory addresses and registers:

Address Value Register Value
0x100 OxXFF grax 0x100
0x104 0xAB ¥rcx 0x1
0x108 0x13 Frdx 0x3
0x10C Ox11

Operand Value

Fill in the table to the right showing

: : grax
the values for the indicated operands. %104 —
_ $0x108
Reminder: ($rax)
4 (%rax)
Most general form: Imm(xp,xi,S) 9 (srax,3rdx)

Imm + R[xp] + R[ri] *s 260(%rcx,%rdx)
O0XFC(,%rcx,4)

Also: 260d = Ox104 (%rax, %rdx,4)

43

Practice With Operand Forms

Assume the following values are stored at the indicated memory addresses and registers:

Address Value Register Value
0x100 O0xXFF srax 0x100
0x104 0xAB ¥rcx Ox1
0x108 0x13 grdx 0x3
0x10C 0x11

Operand Value Comment

Fill in the table to the right showing

C $rax 0x100 Reqgister
the values for the indicated operands. %104 0xnB Absolute address
_ $0x108 0x108 Immediate
Reminder: (%rax) 0xFF Address 0x100
4 (%rax) 0xAB Address 0x104
Most general form: Imm(xp,xi,S) 9(srax,srdx) O0xll Address 0x10C

Imm + R[rs] + R[xi] *s 260 (%rcx,%rdx) 0x13 Address 0x108
O0XFC(,%rcx,4) OXFF Address 0x100

Also: 260d = Ox104 (%rax,srdx,4) O0xll Address 0x10C
44

Recap

* Overview: GCC and Assembly

* Demo: Looking at an executable

* Registers and The Assembly Level of Abstraction
* A Brief History

* Our First Assembly

* Break: Announcements

* The mov instruction

Next time: diving deeper into assembly

45

