
1
This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Marty Stepp, Cynthia Lee, Chris Gregg, and others.

CS107, Lecture 13
Assembly: Control Flow and The Runtime Stack

Reading: B&O 3.6

2

Learning Goals
• Learn how assembly implements loops and control flow
• Learn how assembly calls functions.

3

Plan For Today
• Control Flow
• Condition Codes
• Assembly Instructions

• Break: Announcements
• Function Calls and the Stack

4

mov Variants
• mov only updates the specific register bytes or memory locations indicated.
• Exception: movl writing to a register will also set high order 4 bytes to 0.

• Suffix sometimes optional if size can be inferred.

5

No-Op
• The nop/nopl instructions are “no-op” instructions – they do nothing!
• No-op instructions do nothing except increment %rip
• Why? To make functions align on nice multiple-of-8 address boundaries.

“Sometimes, doing nothing is the
way to be most productive.” –
Philosopher Nick

6

Mov
• Sometimes, you’ll see the following: mov %ebx, %ebx
• What does this do? It zeros out the top 32 register bits, because when mov is

performed on an e- register, the rest of the 64 bits are zeroed out.

7

xor
• Sometimes, you’ll see the following: xor %ebx, %ebx
• What does this do? It sets %ebx to zero! May be more efficient than using

mov.

8

Plan For Today
• Control Flow
• Condition Codes
• Assembly Instructions

• Break: Announcements
• Function Calls and the Stack

9

Control
• In C, we have control flow statements like if, else, while, for, etc. that let us

write programs that are more expressive than just “straight-line code” (one
instruction following another). We can “control” the “flow” of our programs.
• This boils down to conditional execution of statements: executing statements if

one condition is true, executing other statements if one condition is false, etc.
• How is this represented in assembly?
• A way to store conditions that we will check later
• Assembly instructions whose behavior is dependent on these conditions

10

Control
• In C, we have control flow statements like if, else, while, for, etc. that let us

write programs that are more expressive than just “straight-line code” (one
instruction following another). We can “control” the “flow” of our programs.
• This boils down to conditional execution of statements: executing statements if

one condition is true, executing other statements if one condition is false, etc.
• How is this represented in assembly?
• A way to store conditions that we will check later
• Assembly instructions whose behavior is dependent on these conditions

11

Plan For Today
• Control Flow
• Condition Codes
• Assembly Instructions

• Break: Announcements
• Function Calls and the Stack

12

Condition Codes
Alongside normal registers, the CPU also has single-bit condition code registers.
These can be updated and read to influence what to do next. They are
automatically updated by the most recent arithmetic or logical operation.

Most common condition codes:
• CF: Carry flag. The most recent operation generated a carry out of the most

significant bit. Used to detect overflow for unsigned operations.
• ZF: Zero flag. The most recent operation yielded zero.
• SF: Sign flag. The most recent operation yielded a negative value.
• OF: Overflow flag. The most recent operation caused a two’s-complement

overflow-either negative or positive.

13

Condition Codes

• CF: Carry flag. The most recent operation
generated a carry out of the most
significant bit. Used to detect overflow for
unsigned operations.
• ZF: Zero flag. The most recent operation

yielded zero.
• SF: Sign flag. The most recent operation

yielded a negative value.
• OF: Overflow flag. The most recent

operation caused a two’s-complement
overflow-either negative or positive.

int a = 5;
int b = -5;
int t = a + b;

Common Condition Codes Which flag would be set after this code?

14

Condition Codes

• CF: Carry flag. The most recent operation
generated a carry out of the most
significant bit. Used to detect overflow for
unsigned operations.
• ZF: Zero flag. The most recent operation

yielded zero.
• SF: Sign flag. The most recent operation

yielded a negative value.
• OF: Overflow flag. The most recent

operation caused a two’s-complement
overflow-either negative or positive.

int a = 5;
int b = -5;
int t = a + b;

Common Condition Codes Which flag would be set after this code?

15

Condition Codes

• CF: Carry flag. The most recent operation
generated a carry out of the most
significant bit. Used to detect overflow for
unsigned operations.
• ZF: Zero flag. The most recent operation

yielded zero.
• SF: Sign flag. The most recent operation

yielded a negative value.
• OF: Overflow flag. The most recent

operation caused a two’s-complement
overflow-either negative or positive.

int a = 5;
int b = -20;
int t = a + b;

Common Condition Codes Which flag would be set after this code?

16

Condition Codes

• CF: Carry flag. The most recent operation
generated a carry out of the most
significant bit. Used to detect overflow for
unsigned operations.
• ZF: Zero flag. The most recent operation

yielded zero.
• SF: Sign flag. The most recent operation

yielded a negative value.
• OF: Overflow flag. The most recent

operation caused a two’s-complement
overflow-either negative or positive.

int a = 5;
int b = -20;
int t = a + b;

Common Condition Codes Which flag would be set after this code?

17

Condition Codes
• Previously-discussed arithmetic and logical instructions update these flags. lea

does not (it was intended only for address computations).
• Logical operations (xor, etc.) set carry and overflow flags to zero.
• Shift operations set the carry flag to the last bit shifted out, and set the

overflow flag to zero.
• For more complicated reasons, inc and dec set the overflow and zero flags, but

leave the carry flag unchanged.

18

Setting Condition Codes
• In addition to being set automatically from logical and arithmetic operations,

we can also update condition codes ourselves.
• The cmp instruction is like the subtraction instruction, but it does not store the

result anywhere. It just sets condition codes.

• NOTE: the operand order can be confusing!

Instruction Based on Description
CMP S1, S2 S2 - S1 Compare
 cmpb Compare byte
 cmpw Compare word
 cmpl Compare double word
 cmpq Compare quad word

TEST S1, S2 S2 & S1 Test

 testb Test byte
 testw Test word
 testl Test double word
 testq Test quad word

19

Setting Condition Codes
• In addition to being set automatically from logical and arithmetic operations,

we can also update condition codes ourselves.
• The test instruction is like the AND instruction, but it does not store the result

anywhere. It just sets condition codes.

Instruction Based on Description
CMP S1, S2 S2 - S1 Compare
 cmpb Compare byte
 cmpw Compare word
 cmpl Compare double word
 cmpq Compare quad word

TEST S1, S2 S2 & S1 Test

 testb Test byte
 testw Test word
 testl Test double word
 testq Test quad word

Instruction Based on Description
CMP S1, S2 S2 - S1 Compare
 cmpb Compare byte
 cmpw Compare word
 cmpl Compare double word
 cmpq Compare quad word

TEST S1, S2 S2 & S1 Test

 testb Test byte
 testw Test word
 testl Test double word
 testq Test quad word

20

Setting Condition Codes
• The test instruction is like the AND instruction, but it does not store the result

anywhere. It just sets condition codes.

• Cool trick: if we pass the same value for both operands, we can check the sign
of that value using the Sign Flag and Zero Flag condition codes!

Instruction Based on Description
CMP S1, S2 S2 - S1 Compare
 cmpb Compare byte
 cmpw Compare word
 cmpl Compare double word
 cmpq Compare quad word

TEST S1, S2 S2 & S1 Test

 testb Test byte
 testw Test word
 testl Test double word
 testq Test quad word

Instruction Based on Description
CMP S1, S2 S2 - S1 Compare
 cmpb Compare byte
 cmpw Compare word
 cmpl Compare double word
 cmpq Compare quad word

TEST S1, S2 S2 & S1 Test

 testb Test byte
 testw Test word
 testl Test double word
 testq Test quad word

21

Control
• In C, we have control flow statements like if, else, while, for, etc. that let us

write programs that are more expressive than just “straight-line code” (one
instruction following another). We can “control” the “flow” of our programs.
• This boils down to conditional execution of statements: executing statements if

one condition is true, executing other statements if one condition is false, etc.
• How is this represented in assembly?
• A way to store conditions that we will check later
• Assembly instructions whose behavior is dependent on these conditions

22

Plan For Today
• Control Flow
• Condition Codes
• Assembly Instructions

• Break: Announcements
• Function Calls and the Stack

23

Condition Code-Dependent Instructions
There are three common instruction types that use condition codes:
• set instructions conditionally set a byte to 0 or 1
• new versions of mov instructions conditionally move data
• jmp instructions conditionally jump to a different next instruction

24

Conditionally Setting Bytes
Instruction Synonym Set Condition
sete D setz Equal / zero
setne D setnz Not equal / not zero
sets D Negative
setns D Nonnegative
setg D setnle Greater (signed >)
setge D setnl Greater or equal (signed >=)
setl D setnge Less (signed <)
setle D setng Less or equal (signed <=)
seta D setnbe Above (unsigned >)
setae D setnb Above or equal (unsigned >=)
setb D setnae Below (unsigned <)
setbe D setna Below or equal (unsigned <=)

(1 if true, 0 if false)

25

Conditionally Moving Data
Instruction Synonym Move Condition
cmove S,R cmovz Equal / zero (ZF=1)
cmovne S,R cmovnz Not equal / not zero (ZF=0)
cmovs S,R Negative (SF=1)
cmovns S,R Nonnegative (SF=0)
cmovg S,R cmovnle Greater (signed >) (SF=0 and SF=OF)
cmovge S,R cmovnl Greater or equal (signed >=) (SF=OF)
cmovl S,R cmovnge Less (signed <) (SF != OF)
cmovle S,R cmovng Less or equal (signed <=) (ZF=1 or SF!=OF)

cmova S,R cmovnbe Above (unsigned >) (CF = 0 and ZF = 0)
cmovae S,R cmovnb Above or equal (unsigned >=) (CF = 0)
cmovb S,R cmovnae Below (unsigned <) (CF = 1)
cmovbe S,R cmovna Below or equal (unsigned <=) (CF = 1 or ZF = 1)

26

Condition Codes
Different combinations of condition codes can indicate different things.

• E.g. To check equality, we can look at the ZERO flag (a = b means a – b = 0)

How can we check whether signed a < b?

• Overflow may occur! We have to take that into account.

• If no overflow: a < b if a – b < 0, and a >= b if a – b >= 0

• If overflow: a < b if a – b > 0 (negative overflow), a > b if a – b < 0 (positive
overflow)

Idea: a < b when overflow flag is 1 and sign flag is 0, or when overflow flag is 0
and sign flag is 1. OF ^ SF!

27

jmp
The jmp instruction jumps to another instruction in the assembly code
(“Unconditional Jump”).

jmp Label (Direct Jump)
jmp *Operand (Indirect Jump)

The destination can be hardcoded into the instruction (direct jump):
jmp 404f8 <loop+0xb> # jump to instruction at 0x404f8

The destination can also be read from a memory location (indirect jump):
jmp *%rax # jump to instruction at address in %rax

28

Conditional Jumps
• There are also variants of jmp that jump only if certain conditions are true

(“Conditional Jump”). The jump location for these must be hardcoded into the
instruction.

Instruction Synonym Set Condition
jmp Label Direct jump

jmp *Operand Indirect jump

je Label jz Equal / zero (ZF=1)
jne Label jnz Not equal / not zero (ZF=0)
js Label Negative (SF=1)
jns Label Nonnegative (SF=0)
jg Label jnle Greater (signed >) (SF=0 and SF=OF)
jge Label jnl Greater or equal (signed >=) (SF=OF)
jl Label jnge Less (signed <) (SF != OF)
jle Label jng Less or equal (signed <=) (ZF=1 or SF!=OF)

ja Label jnbe Above (unsigned >) (CF = 0 and ZF = 0)
jae Label jnb Above or equal (unsigned >=) (CF = 0)
jb Label jnae Below (unsigned <) (CF = 1)
jbe Label jna Below or equal (unsigned <=) (CF = 1 or ZF = 1)

29

Loops and Control Flow
Jump instructions are critical to implementing control flow in assembly. Let’s
see why!

30

Practice: Fill In The Blank

C Code What does this assembly code translate to?
00000000004004fe <if_then>:

4004fe: push %rbp
4004ff: mov %rsp,%rbp
400502: mov %edi,-0x4(%rbp)
400505: cmpl $0x6,-0x4(%rbp)
400509: jne 40050f
40050b: addl $0x1,-0x4(%rbp)
40050f: shll -0x4(%rbp)
400512: pop %rbp
400513: retq

void if_then(int param1) {
if (__________) {

__________;
}

param1 *= ______;
}

31

Practice: Fill In The Blank

C Code What does this assembly code translate to?
00000000004004fe <if_then>:

4004fe: push %rbp
4004ff: mov %rsp,%rbp
400502: mov %edi,-0x4(%rbp)
400505: cmpl $0x6,-0x4(%rbp)
400509: jne 40050f
40050b: addl $0x1,-0x4(%rbp)
40050f: shll -0x4(%rbp)
400512: pop %rbp
400513: retq

void if_then(int param1) {
if (param1 == 6) {

__________;
}

param1 *= ______;
}

32

Practice: Fill In The Blank

C Code What does this assembly code translate to?
00000000004004fe <if_then>:

4004fe: push %rbp
4004ff: mov %rsp,%rbp
400502: mov %edi,-0x4(%rbp)
400505: cmpl $0x6,-0x4(%rbp)
400509: jne 40050f
40050b: addl $0x1,-0x4(%rbp)
40050f: shll -0x4(%rbp)
400512: pop %rbp
400513: retq

void if_then(int param1) {
if (param1 == 6) {

param1++;
}

param1 *= ______;
}

33

Practice: Fill In The Blank

C Code What does this assembly code translate to?
00000000004004fe <if_then>:

4004fe: push %rbp
4004ff: mov %rsp,%rbp
400502: mov %edi,-0x4(%rbp)
400505: cmpl $0x6,-0x4(%rbp)
400509: jne 40050f
40050b: addl $0x1,-0x4(%rbp)
40050f: shll -0x4(%rbp)
400512: pop %rbp
400513: retq

void if_then(int param1) {
if (param1 == 6) {

param1++;
}

param1 *= 2;
}

34

Common If-Else Construction

if (num > 3) {
x = 10;

} else {
x = 7;

}

num++;

Test
Jump past if-body if test fails
If-body
Jump past else-body
Else-body
Past else body

If-Else In C If-Else In Assembly

35

Loops and Control Flow
void loop() {

int i = 0;
while (i < 100) {

i++;
}

}

0x0000000000400570 <+0>: mov $0x0,%eax
0x0000000000400575 <+5>: jmp 0x40057a <loop+10>
0x0000000000400577 <+7>: add $0x1,%eax
0x000000000040057a <+10>: cmp $0x63,%eax
0x000000000040057d <+13>: jle 0x400577 <loop+7>
0x000000000040057f <+15>: repz retq

36

Loops and Control Flow
void loop() {

int i = 0;
while (i < 100) {

i++;
}

}

0x0000000000400570 <+0>: mov $0x0,%eax
0x0000000000400575 <+5>: jmp 0x40057a <loop+10>
0x0000000000400577 <+7>: add $0x1,%eax
0x000000000040057a <+10>: cmp $0x63,%eax
0x000000000040057d <+13>: jle 0x400577 <loop+7>
0x000000000040057f <+15>: repz retq

Set %eax (i) to 0.

37

Loops and Control Flow
void loop() {

int i = 0;
while (i < 100) {

i++;
}

}

0x0000000000400570 <+0>: mov $0x0,%eax
0x0000000000400575 <+5>: jmp 0x40057a <loop+10>
0x0000000000400577 <+7>: add $0x1,%eax
0x000000000040057a <+10>: cmp $0x63,%eax
0x000000000040057d <+13>: jle 0x400577 <loop+7>
0x000000000040057f <+15>: repz retq

Jump to another instruction.

38

Loops and Control Flow
void loop() {

int i = 0;
while (i < 100) {

i++;
}

}

0x0000000000400570 <+0>: mov $0x0,%eax
0x0000000000400575 <+5>: jmp 0x40057a <loop+10>
0x0000000000400577 <+7>: add $0x1,%eax
0x000000000040057a <+10>: cmp $0x63,%eax
0x000000000040057d <+13>: jle 0x400577 <loop+7>
0x000000000040057f <+15>: repz retq

Compare %eax (i) to 0x63 (99)
by calculating %eax – 0x63.
This is 0 – 99 = -99, so it sets
the Sign Flag to 1.

39

Loops and Control Flow
void loop() {

int i = 0;
while (i < 100) {

i++;
}

}

0x0000000000400570 <+0>: mov $0x0,%eax
0x0000000000400575 <+5>: jmp 0x40057a <loop+10>
0x0000000000400577 <+7>: add $0x1,%eax
0x000000000040057a <+10>: cmp $0x63,%eax
0x000000000040057d <+13>: jle 0x400577 <loop+7>
0x000000000040057f <+15>: repz retq

jle means “jump if less than or
equal”. The sign flag indicates the
result was negative, so we jump.

40

Loops and Control Flow
void loop() {

int i = 0;
while (i < 100) {

i++;
}

}

0x0000000000400570 <+0>: mov $0x0,%eax
0x0000000000400575 <+5>: jmp 0x40057a <loop+10>
0x0000000000400577 <+7>: add $0x1,%eax
0x000000000040057a <+10>: cmp $0x63,%eax
0x000000000040057d <+13>: jle 0x400577 <loop+7>
0x000000000040057f <+15>: repz retq

Add 1 to %eax (i).

41

Loops and Control Flow
void loop() {

int i = 0;
while (i < 100) {

i++;
}

}

0x0000000000400570 <+0>: mov $0x0,%eax
0x0000000000400575 <+5>: jmp 0x40057a <loop+10>
0x0000000000400577 <+7>: add $0x1,%eax
0x000000000040057a <+10>: cmp $0x63,%eax
0x000000000040057d <+13>: jle 0x400577 <loop+7>
0x000000000040057f <+15>: repz retq

Compare %eax (i) to 0x63 (99)
by calculating %eax – 0x63.
This is 1 – 99 = -98, so it sets
the Sign Flag to 1.

42

Loops and Control Flow
void loop() {

int i = 0;
while (i < 100) {

i++;
}

}

0x0000000000400570 <+0>: mov $0x0,%eax
0x0000000000400575 <+5>: jmp 0x40057a <loop+10>
0x0000000000400577 <+7>: add $0x1,%eax
0x000000000040057a <+10>: cmp $0x63,%eax
0x000000000040057d <+13>: jle 0x400577 <loop+7>
0x000000000040057f <+15>: repz retq

jle means “jump if less than or
equal”. The sign flag indicates the
result was negative, so we jump.

43

Loops and Control Flow
void loop() {

int i = 0;
while (i < 100) {

i++;
}

}

0x0000000000400570 <+0>: mov $0x0,%eax
0x0000000000400575 <+5>: jmp 0x40057a <loop+10>
0x0000000000400577 <+7>: add $0x1,%eax
0x000000000040057a <+10>: cmp $0x63,%eax
0x000000000040057d <+13>: jle 0x400577 <loop+7>
0x000000000040057f <+15>: repz retq

We continue in this pattern until
we do not make this conditional
jump. When will that be?

44

Loops and Control Flow
void loop() {

int i = 0;
while (i < 100) {

i++;
}

}

0x0000000000400570 <+0>: mov $0x0,%eax
0x0000000000400575 <+5>: jmp 0x40057a <loop+10>
0x0000000000400577 <+7>: add $0x1,%eax
0x000000000040057a <+10>: cmp $0x63,%eax
0x000000000040057d <+13>: jle 0x400577 <loop+7>
0x000000000040057f <+15>: repz retq

We will stop looping when this
comparison says that %eax – 0x63 > 0!

45

Loops and Control Flow
void loop() {

int i = 0;
while (i < 100) {

i++;
}

}

0x0000000000400570 <+0>: mov $0x0,%eax
0x0000000000400575 <+5>: jmp 0x40057a <loop+10>
0x0000000000400577 <+7>: add $0x1,%eax
0x000000000040057a <+10>: cmp $0x63,%eax
0x000000000040057d <+13>: jle 0x400577 <loop+7>
0x000000000040057f <+15>: repz retq

Then, we return from the function.

46

Common Loop Construction

for (int i = 0; i < n; i++) {
// body

}

/* equivalent while loop */
int i = 0;
while (i < n) {

// body
i++;

}

Initialization
Test
Jump past loop if fails
Body
Increment
Jump to test

For Loop In C For Loop In Assembly

47

GCC For Loop Output

Initialization
Test
Jump past loop if fails
Body
Increment
Jump to test

Initialization
Jump to test
Body
Increment
Test
Jump to body if success

For Loop In Assembly GCC For Loop Output

48

GCC For Loop Output

Initialization
Test
Jump past loop if fails
Body
Increment
Jump to test

Initialization
Jump to test
Body
Increment
Test
Jump to body if success

For Loop In Assembly GCC For Loop Output

49

GCC For Loop Output

Initialization
Test
Jump past loop if fails
Body
Increment
Jump to test

Initialization
Jump to test
Body
Increment
Test
Jump to body if success

For Loop In Assembly GCC For Loop Output
for (int i = 0; i < n; i++) // n = 100

50

GCC For Loop Output

Initialization
Test
Jump past loop if fails
Body
Increment
Jump to test

Initialization
Jump to test
Body
Increment
Test
Jump to body if success

For Loop In Assembly GCC For Loop Output
for (int i = 0; i < n; i++) // n = 100

Initialization
Test
No jump
Body
Increment
Jump to test
Test
No jump
Body
Increment
Jump to test
...

51

GCC For Loop Output

Initialization
Test
Jump past loop if fails
Body
Increment
Jump to test

Initialization
Jump to test
Body
Increment
Test
Jump to body if success

For Loop In Assembly GCC For Loop Output
for (int i = 0; i < n; i++) // n = 100

Initialization
Test
No jump
Body
Increment
Jump to test
Test
No jump
Body
Increment
Jump to test
...

52

GCC For Loop Output

Initialization
Test
Jump past loop if fails
Body
Increment
Jump to test

Initialization
Jump to test
Body
Increment
Test
Jump to body if success

For Loop In Assembly GCC For Loop Output
for (int i = 0; i < n; i++) // n = 100

53

GCC For Loop Output

Initialization
Test
Jump past loop if fails
Body
Increment
Jump to test

Initialization
Jump to test
Body
Increment
Test
Jump to body if success

For Loop In Assembly GCC For Loop Output
for (int i = 0; i < n; i++) // n = 100

Initialization
Jump to test
Body
Increment
Test
Jump to body
Body
Increment
Test
Jump to body
Body
...

54

GCC For Loop Output

Initialization
Test
Jump past loop if fails
Body
Increment
Jump to test

Initialization
Jump to test
Body
Increment
Test
Jump to body if success

For Loop In Assembly GCC For Loop Output
for (int i = 0; i < n; i++) // n = 100

Initialization
Jump to test
Body
Increment
Test
Jump to body
Body
Increment
Test
Jump to body
Body
...

55

GCC For Loop Output

Initialization
Test
Jump past loop if fails
Body
Increment
Jump to test

Initialization
Jump to test
Body
Increment
Test
Jump to body if success

For Loop In Assembly GCC For Loop Output

Which instructions are better when n = 0?

for (int i = 0; i < n; i++) // n = 100

56

Optimizing Instruction Counts
• Both of these loop forms have the same static instruction count – same

number of written instructions.
• But they have different dynamic instruction counts – the number of times

these instructions are executed when the program is run.
• If n = 0, left is best
• If n is large, right is best

• The compiler may emit static instruction counts many times longer than
alternatives, but which is more efficient if loop executes many times.
• Problem: the compiler may not know whether the loop will execute many

times! Hard problem….. (take EE108, EE180, CS316 for more!)

57

Optimizations
• Conditional Moves can sometimes eliminate “branches” (jumps), which are

particularly inefficient on modern computer hardware.
• Processors try to predict the future execution of instructions for maximum

performance. This is difficult to do with jumps.

58

Practice: Fill In The Blank

C Code What does this assembly code translate to?
// a in %rdi, b in %rsi
loop:

movl $1, %eax
jmp .L2

.L3
leaq (%rdi,%rsi), %rdx
imulq %rdx, %rax
addq $1, %rdi

.L2
cmpq %rsi, %rdi
jl .L3

rep; ret

long loop(long a, long b) {
long result = _______;
while (_________) {
result = __________;
a = _________;

}
return result;

}

59

Practice: Fill In The Blank

C Code What does this assembly code translate to?
// a in %rdi, b in %rsi
loop:

movl $1, %eax
jmp .L2

.L3
leaq (%rdi,%rsi), %rdx
imulq %rdx, %rax
addq $1, %rdi

.L2
cmpq %rsi, %rdi
jl .L3

rep; ret

long loop(long a, long b) {
long result = 1;
while (a < b) {
result = result*(a+b);
a = a + 1;

}
return result;

}

60

Plan For Today
• Control Flow
• Condition Codes
• Assembly Instructions

• Break: Announcements
• Function Calls and the Stack

61

Announcements
• Midterms have been graded, and will be returned after class
• Visit gradescope.com (you should receive an email) to view your exam and

score
• Regrades accepted until next Friday at 2PM

62

Plan For Today
• Control Flow
• Condition Codes
• Assembly Instructions

• Instruction Pointer
• Break: Announcements
• Function Calls and the Stack

63

How do we call functions in
assembly?

64

Calling Functions In Assembly
To call a function in assembly, we must do a few things:
• Pass Control – %rip must be adjusted to execute the function being called and

then resume the caller function afterwards.
• Pass Data – we must pass any parameters and receive any return value.
• Manage Memory – we must handle any space needs of the caller on the stack.

Terminology: caller function calls the callee function.

65

Stack Frame

0x0

main()

Heap

myfunction()

foo()

foo2()

Data

Text (code)

66

Register Responsibilities
Some registers take on special responsibilities during program execution.
• %rax stores the return value
• %rdi stores the first parameter to a function
• %rsi stores the second parameter to a function
• %rdx stores the third parameter to a function
• %rip stores the address of the next instruction to execute
• %rsp stores the address of the current top element on the stack

See the x86-64 Guide and Reference Sheet on the Resources webpage for more!

67

%rsp

Memory

0x0

main()

Heap

myfunction()

foo()

foo2()

Data

Text (code)

%rsp

68

Pushing/Popping with the Stack

69

Pushing onto the Stack

70

Pushing onto the Stack

71

Pushing onto the Stack

72

Pushing/Popping with the Stack
• Pushing a quad word onto the stack means decrementing the stack pointer by

8, and writing the value to the new top-of-stack address. Equivalent (e.g. with
%rax):

subq $8, %rsp
movq %rax, (%rsp)

• Popping a quad word off the stack means reading the value at %rsp, and then
incrementing the stack pointer by 8. Equivalent (e.g. with %rdx):

movq (%rsp), %rdx
addq $8, %rsp

73

Key Idea: %rsp

%rsp must point to the same place
before and after a function is called.

74

Stack Frame

0x0

main()

Heap

myfunction()

foo()

Data

Text (code)

%rsp

75

Stack Frame

0x0

main()

Heap

myfunction()

foo()

foo2()

Data

Text (code)

%rsp

76

Stack Frame

0x0

main()

Heap

myfunction()

foo()

Data

Text (code)

%rsp

77

Calling Functions In Assembly
To call a function in assembly, we must do a few things:
• Pass Control – %rip must be adjusted to execute the function being called and

then resume the caller function afterwards.
• Pass Data – we must pass any parameters and receive any return value.
• Manage Memory – we must handle any space needs of the caller on the stack.

Terminology: caller function calls the callee function.

78

Passing Control
• Problem: %rip stores the current

instruction being executed. If we
execute the callee’s instructions,
we must remember what
instruction to resume at in the
caller after!
• Solution: use the callq command

to push the current value of %rip
at the bottom of the caller’s stack
frame before calling the function.
Then after the callee is finished,
use the ret instruction to put this
value back into %rip and continue
executing.

79

Call And Return
The call instruction pushes the value of %rip onto the stack and sets %rip to
point to the beginning of the specified function.

call Label
call *Operand

The ret instruction pops the value of %rip from the stack and sets %rip to store
this value.

ret

80

Recap
• Control Flow
• Condition Codes
• Assembly Instructions

• Instruction Pointer
• Break: Announcements
• Function Calls and the Stack

Next time: more function calls and optimizations

