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CS107, Lecture 16
More Managing The Heap; Optimization

Reading: B&O 9.9, 9.11
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Learning Goals
• Learn about the unique aspects of the explicit free list allocator design
• Understand the process of coalescing free blocks and how it helps 

performance
• Understand the process of in-place realloc and how it helps performance
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Plan For Today
• Recap: Heap Allocators – Bump and Implicit
• Method 3: Explicit Free List Allocator
• Coalescing
• Break: Announcements
• In-Place Realloc
• Optimization
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Plan For Today
• Recap: Heap Allocators – Bump and Implicit
• Method 3: Explicit Free List Allocator
• Coalescing
• Break: Announcements
• In-Place Realloc
• Optimization
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What is a heap allocator?
• A heap allocator is a set of functions that fulfills requests for heap memory.
• A heap allocator is like a hotel concierge that manages its hotel rooms!
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Heap Allocator Functions
void *malloc(size_t size);

Returns a pointer to a block of heap memory of at least size bytes, or 
NULL if an error occurred.

void free(void *ptr);
Frees the heap-allocated block starting at the specified address.

void *realloc(void *ptr, size_t size);
Changes the size of the heap-allocated block starting at the specified 
address to be the new specified size.  Returns the address of the new, 
larger allocated memory region.



7

Heap Allocator Requirements
A heap allocator must…
1. Handle arbitrary request sequences of allocations and frees
2. Keep track of which memory is allocated and which is available
3. Decide which memory to provide to fulfill an allocation request
4. Immediately respond to requests without delay
5. Return addresses that are 8-byte-aligned (must be multiples of 8).
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Heap Allocator Goals
• Goal 1: Maximize throughput, or the number of requests completed per unit 

time.  This means minimizing the average time to satisfy a request.
• Goal 2: Maximize memory utilization, or how efficiently we make use of the 

limited heap memory to satisfy requests.

These are seemingly conflicting goals – for instance, it may take longer to better 
plan out heap memory use for each request.  

Heap allocators must find an appropriate balance between these two goals!
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Bump Allocator
• A bump allocator is a heap allocator design that simply allocates the next 

available memory address upon an allocate request, and does nothing on a 
free request.
• Throughput: each malloc and free execute only a handful of instructions:
• It is easy to find the next location to use
• Free does nothing!

• Utilization: we use each memory block at most once.  No freeing at all, so no 
memory is ever reused. L
• We provide a bump allocator implementation as part of assign7 as a code 

reading exercise.
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Bump Allocator
void *a = malloc(4);
void *b = malloc(8);
void *c = malloc(24);
free(b);
void *d = malloc(4);

0x10 0x14 0x18 0x1c 0x20 0x24 0x28 0x2c 0x30 0x34

AVAILABLE
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Bump Allocator
void *a = malloc(4);
void *b = malloc(8);
void *c = malloc(24);
free(b);
void *d = malloc(4);

0x10 0x14 0x18 0x1c 0x20 0x24 0x28 0x2c 0x30 0x34

a + padding AVAILABLE

Variable Value

a 0x10
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Bump Allocator
void *a = malloc(4);
void *b = malloc(8);
void *c = malloc(24);
free(b);
void *d = malloc(4);

Variable Value

a 0x10

b 0x18

0x10 0x14 0x18 0x1c 0x20 0x24 0x28 0x2c 0x30 0x34

a + padding b AVAILABLE
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Bump Allocator
void *a = malloc(4);
void *b = malloc(8);
void *c = malloc(24);
free(b);
void *d = malloc(4);

Variable Value

a 0x10

b 0x18

c 0x20

0x10 0x14 0x18 0x1c 0x20 0x24 0x28 0x2c 0x30 0x34

a + padding b c
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Bump Allocator
void *a = malloc(4);
void *b = malloc(8);
void *c = malloc(24);
free(b);
void *d = malloc(4);

Variable Value

a 0x10

b 0x18

c 0x20

0x10 0x14 0x18 0x1c 0x20 0x24 0x28 0x2c 0x30 0x34

a + padding b c
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Bump Allocator
void *a = malloc(4);
void *b = malloc(8);
void *c = malloc(24);
free(b);
void *d = malloc(4);

Variable Value

a 0x10

b 0x18

c 0x20

d NULL

0x10 0x14 0x18 0x1c 0x20 0x24 0x28 0x2c 0x30 0x34

a + padding b c



16

Summary: Bump Allocator
• A bump allocator is an extreme heap allocator – it optimizes only for 
throughput, not utilization.  
• Better allocators strike a more reasonable balance.  How can we do this?

Questions to consider:
1. How do we keep track of free blocks?
2. How do we choose an appropriate free block in which to place a newly 

allocated block?
3. After we place a newly allocated block in some free block, what do we do 

with the remainder of the free block?
4. What do we do with a block that has just been freed?
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Implicit Free List Allocator
• Key idea: in order to reuse blocks, we need a way to track which blocks are 

allocated and which are free.
• We could store this information in a separate global data structure, but this is 

inefficient.
• Instead: let’s allocate extra space before each block for a header storing its 

payload size and whether it is allocated or free.
• When we allocate a block, we look through the blocks to find a free one, and 

we update its header to reflect its allocated size and that it is now allocated.
• When we free a block, we update its header to reflect it is now free.
• The header should be 8 bytes (or larger).
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Implicit Free List Allocator
void *a = malloc(4);
void *b = malloc(8);
void *c = malloc(4);
free(b);
void *d = malloc(8);
free(a);
void *e = malloc(24);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

72
Free
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Implicit Free List Allocator
void *a = malloc(4);
void *b = malloc(8);
void *c = malloc(4);
free(b);
void *d = malloc(8);
free(a);
void *e = malloc(24);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Used

a + 
pad

56
Free

Variable Value

a 0x18



20

Implicit Free List Allocator
void *a = malloc(4);
void *b = malloc(8);
void *c = malloc(4);
free(b);
void *d = malloc(8);
free(a);
void *e = malloc(24);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Used

a + 
pad

8
Used b 40

Free

Variable Value

a 0x18

b 0x28
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Implicit Free List Allocator
void *a = malloc(4);
void *b = malloc(8);
void *c = malloc(4);
free(b);
void *d = malloc(8);
free(a);
void *e = malloc(24);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Used

a + 
pad

8
Used b 8

Used
c + 
pad

24
Free

Variable Value

a 0x18

b 0x28

c 0x38
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Implicit Free List Allocator
void *a = malloc(4);
void *b = malloc(8);
void *c = malloc(4);
free(b);
void *d = malloc(8);
free(a);
void *e = malloc(24);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Used

a + 
pad

8
Free b 8

Used
c + 
pad

24
Free

Variable Value

a 0x18

b 0x28

c 0x38
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Implicit Free List Allocator
void *a = malloc(4);
void *b = malloc(8);
void *c = malloc(4);
free(b);
void *d = malloc(8);
free(a);
void *e = malloc(24);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Used

a + 
pad

8
Used d 8

Used
c + 
pad

24
Free

Variable Value

a 0x18

b 0x28

c 0x38

d 0x28
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Implicit Free List Allocator
void *a = malloc(4);
void *b = malloc(8);
void *c = malloc(4);
free(b);
void *d = malloc(8);
free(a);
void *e = malloc(24);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Free

a + 
pad

8
Used d 8

Used
c + 
pad

24
Free

Variable Value

a 0x18

b 0x28

c 0x38

d 0x28
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Implicit Free List Allocator
void *a = malloc(4);
void *b = malloc(8);
void *c = malloc(4);
free(b);
void *d = malloc(8);
free(a);
void *e = malloc(24);

Variable Value

a 0x18

b 0x28

c 0x38

d 0x28

e 0x48

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Free

a + 
pad

8
Used d 8

Used
c + 
pad

24
Used e
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Implicit Free List Allocator
void *a = malloc(4);
void *b = malloc(8);
void *c = malloc(4);
free(b);
void *d = malloc(8);
free(a);
void *e = malloc(24);

Variable Value

a 0x18

b 0x28

c 0x38

d 0x28

e 0x48

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Free

a + 
pad

8
Used d 8

Used
c + 
pad

24
Used e
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Representing Headers
How can we store both a size and a status (Free/Allocated) in 8 bytes?

Int for size, int for bytes?  

Key idea: block sizes will always be multiples of 8. (Why?)
• Least-significant 3 bits will be unused!
• Solution: use one of the 3 least-significant bits to store free/allocated status

For assignment 7, you may use this approach, or another approach, but 
remember that header sizes affect utilization!

no!  malloc/realloc use size_t for sizes!
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Implicit Free List Allocator
• How can we choose a free block to use for an allocation request?
• First fit: search the list from beginning each time and choose first free block that fits.
• Next fit: instead of starting at the beginning, continue where previous search left off.
• Best fit: examine every free block and choose the one with the smallest size that fits.

• Notice if possible we use only a chunk that we need of a larger free block.
• What are the pros/cons of this approach?
• Con: Headers use extra memory in each block
• Pro: Can reuse blocks
• Con: must search entire heap for free blocks
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Revisiting Our Goals
Questions we considered:
1. How do we keep track of free blocks?  Using headers!
2. How do we choose an appropriate free block in which to place a newly 

allocated block?  Iterate through all blocks.
3. After we place a newly allocated block in some free block, what do we do 

with the remainder of the free block?  Try to make the most of it!
4. What do we do with a block that has just been freed?  Update its header!
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Assignment 7: Implicit Allocator
• Must have headers that track block information (size, status in-use or free) -

we recommend using headers larger than the 4 byte headers specified in the 
book, as this makes it easier to satisfy the alignment constraint and store 
information.
• Must have free blocks that are recycled and reused for subsequent malloc 

requests if possible
• Must have a malloc implementation that searches the heap for free blocks via 

an implicit list (i.e. traverses block-by-block).

• Does not need to have coalescing of free blocks
• Does not need to support in-place realloc
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Coalescing
void *e = malloc(24); // returns NULL!

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Free

8
Free

8
Free

24
Used

You do not need to worry about this 
problem for the implicit allocator, but this 
is a requirement for the explicit allocator! 
(More about this later).
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In-Place Realloc
void *a = malloc(4);
void *b = realloc(a, 8);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

72
Free
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In-Place Realloc
void *a = malloc(4);
void *b = realloc(a, 8);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Used

a + 
pad

56
Free

Variable Value

a 0x18
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In-Place Realloc
void *a = malloc(4);
void *b = realloc(a, 8);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Free

a + 
pad

8
Used b 40

Free

Variable Value

a 0x10

b 0x28

The implicit allocator can always move memory to a new 
location for a realloc request.  The explicit allocator must 
support in-place realloc (more on this later).
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Summary: Implicit Allocator
• An implicit allocator is a more efficient implementation that has reasonable 
throughput and utilization due to its recycling of blocks.

Can we do better?
1. Can we avoid searching all blocks for free blocks to reuse?
2. Can we merge adjacent free blocks to keep large spaces available?
3. Can we avoid always copying/moving data during realloc?
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Plan For Today
• Recap: Heap Allocators – Bump and Implicit
• Method 3: Explicit Free List Allocator
• Coalescing
• Break: Announcements
• In-Place Realloc
• Optimization
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Can We Do Better?
• It would be nice if we could jump just between free blocks, rather than all

blocks, to find a block to reuse.
• Idea: let’s modify each header to add a pointer to the next free block and a 

pointer to the previous free block.

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60 0x68

8
Free

8 
Used

56 
Free
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Can We Do Better?
• It would be nice if we could jump just between free blocks, rather than all

blocks, to find a block to reuse.
• Idea: let’s modify each header to add a pointer to the next free block and a 

pointer to the previous free block.

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60 0x68

8
Free null 0x50 8 

Used 0x10 0x50 8
Free 0x10 null
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Can We Do Better?
• It would be nice if we could jump just between free blocks, rather than all

blocks, to find a block to reuse.
• Idea: let’s modify each header to add a pointer to the next free block and a 

pointer to the previous free block.

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60 0x68

8
Free null 0x50 8 

Used 0x10 0x50 8
Free 0x10 null

This is inefficient – it triples the size of every header, 
when we really just need to jump from one free block to 
another.  And even if we just made free headers bigger, 
it’s complicated to have two different header sizes.
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Can We Do Better?
• It would be nice if we could jump just between free blocks, rather than all

blocks, to find a block to reuse.
• Idea: let’s modify each header to add a pointer to the next free block and a 

pointer to the previous free block. This is inefficient / complicated.
• Where can we put these pointers to the next/previous free block?
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Can We Do Better?
• It would be nice if we could jump just between free blocks, rather than all

blocks, to find a block to reuse.
• Idea: let’s modify each header to add a pointer to the next free block and a 

pointer to the previous free block. This is inefficient / complicated.
• Where can we put these pointers to the next/previous free block?
• Idea: In a separate data structure?
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Can We Do Better?
• It would be nice if we could jump just between free blocks, rather than all

blocks, to find a block to reuse.
• Idea: let’s modify each header to add a pointer to the next free block and a 

pointer to the previous free block. This is inefficient / complicated.
• Where can we put these pointers to the next/previous free block?
• Idea: In a separate data structure? More difficult to access in a separate place 

– prefer storing near blocks on the heap itself.
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Can We Do Better?
• Key Insight: the payloads of the free blocks aren’t being used, because they’re 

free.  
• Idea: since we only need to store these pointers for free blocks, let’s store 

them in the first 16 bytes of each free block’s payload!

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60 0x68

16
Free

24 
Used

32
Free
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Can We Do Better?
• Key Insight: the payloads of the free blocks aren’t being used, because they’re 

free.  
• Idea: since we only need to store these pointers for free blocks, let’s store 

them in the first 16 bytes of each free block’s payload!

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60 0x68

16
Free null 0x48 24 

Used
32

Free 0x10 null

0x10
First free block
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Can We Do Better?
• Key Insight: the payloads of the free blocks aren’t being used, because they’re 

free.  
• Idea: since we only need to store these pointers for free blocks, let’s store 

them in the first 16 bytes of each free block’s payload!
• This means each payload must be big enough to store 2 pointers (16 bytes). So

we must require that for every block, free and allocated. (why?)

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60 0x68

16
Free null 0x48 24 

Used
32

Free 0x10 null
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Explicit Free List Allocator
• This design builds on the implicit allocator, but also stores pointers to the next 

and previous free block inside each free block’s payload.
• When we allocate a block, we look through just the free blocks using our linked 

list to find a free one, and we update its header and the linked list to reflect its 
allocated size and that it is now allocated.
• When we free a block, we update its header to reflect it is now free, and 

update the linked list.
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Explicit Free List Allocator
• Note that the doubly-linked list does not have to be in address order.
• You should build up your linked list as efficiently as possible (e.g. where is it 

most efficient to add to a linked list?)
• When you allocate a block, you must update your linked list pointers.

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60 0x68 0x70 0x78 0x80

16
Free 0x70 0x40 16 

Used
16

Free 0x10 null 16
Used

16
Free null 0x10

0x70
First free block
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Revisiting Our Goals
Can we do better?
1. Can we avoid searching all blocks for free blocks to reuse?  Yes!  We can use 

a doubly-linked list.
2. Can we merge adjacent free blocks to keep large spaces available?
3. Can we avoid always copying/moving data during realloc?
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Revisiting Our Goals
Can we do better?
1. Can we avoid searching all blocks for free blocks to reuse?  Yes!  We can use 

a doubly-linked list.
2. Can we merge adjacent free blocks to keep large spaces available?
3. Can we avoid always copying/moving data during realloc?
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Plan For Today
• Recap: Heap Allocators – Bump and Implicit
• Method 3: Explicit Free List Allocator
• Coalescing
• Break: Announcements
• In-Place Realloc
• Optimization
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Coalescing
void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

64
Free
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Coalescing
void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

16
Used a + pad 40

Free
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Coalescing
void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

16
Used a + pad 16

Used b + pad 16
Free
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Coalescing
void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

16
Used a + pad 16

Used b + pad 16
Used c
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Coalescing
void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

16
Used a + pad 16

Free b + pad 16
Used c
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Coalescing
void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

16
Free a + pad 16

Free b + pad 16
Used c
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Coalescing
void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

16
Free a + pad 16

Free b + pad 16
Used c

We have enough memory space, but 
it is fragmented into free blocks 
sized from earlier requests!

We’d like to be able to merge 
adjacent free blocks back together.
How can we do this?



58

Coalescing
void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

16
Free a + pad 16

Free b + pad 16
Used c

Hey, look!  I have a free 
neighbor.  Let’s be 

friends! J
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Coalescing
void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

40
Free

16
Used c

Hey, look!  I have a free 
neighbor.  Let’s be 

friends! J
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Coalescing
void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

The process of combining adjacent 
free blocks is called coalescing.

For your explicit heap allocator, you 
should coalesce if possible when a 
block is freed.  You only need to 
coalesce the most immediate right 
neighbor.

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

40
Free

16
Used c
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Revisiting Our Goals
Can we do better?
1. Can we avoid searching all blocks for free blocks to reuse?  Yes!  We can use 

a doubly-linked list.
2. Can we merge adjacent free blocks to keep large spaces available?  Yes!  We 

can coalesce on free().
3. Can we avoid always copying/moving data during realloc?
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Revisiting Our Goals
Can we do better?
1. Can we avoid searching all blocks for free blocks to reuse?  Yes!  We can use 

a doubly-linked list.
2. Can we merge adjacent free blocks to keep large spaces available?  Yes!  We 

can coalesce on free().
3. Can we avoid always copying/moving data during realloc?
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Plan For Today
• Recap: Heap Allocators – Bump and Implicit
• Method 3: Explicit Free List Allocator
• Coalescing
• Break: Announcements
• In-Place Realloc
• Optimization
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Announcements
Clarifications on assign7 (recent additions to FAQ)
What can/can't I assume about the validity of the parameters to myinit?

You may assume that the heap starting address is aligned to the ALIGNMENT constant. 
You should not assume anything about the heap size, such as that it is a multiple of 
ALIGNMENT (though it is actually fine if it is not), or that it is large enough for the heap 
allocator to use.

Does our code have to work for any alignment, or just 8?
Your code should work for 8 and any value that is a factor of 8, but does not have to work 
for other alignment values, such as multiples of 8. That being said, you should still use the 
ALIGNMENT constant rather than hardcoding the value where possible.
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Announcements
Microsoft recently open-sourced Windows Calculator!
• Great case study of tradeoffs of accurate numeric computation (floats!)
• Can browse the code on GitHub (online code sharing website) – code from as 

far back as 1995!

From Ars Technica article:
“The actual calculations are performed by this ancient code. Calculator's mathematics library 
is built using rational numbers (that is, numbers that can be expressed as the ratio of two 
integers). Where possible, it preserves the exact values of the numbers it is computing, falling 
back on Taylor series expansion when an approximation to an irrational number is required. 
Poking around the change history shows that the very earliest iterations of Windows 
Calculator, starting in 1989, didn't use the rational arithmetic library, instead using floating 
point arithmetic and the much greater loss of precision this implies.”

https://blogs.windows.com/buildingapps/2019/03/06/announcing-the-open-sourcing-of-windows-calculator/
https://arstechnica.com/gadgets/2019/03/calc-exe-is-now-open-source-theres-surprising-depth-in-its-ancient-code/
http://mathworld.wolfram.com/TaylorSeries.html
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Revisiting Our Goals
Can we do better?
1. Can we avoid searching all blocks for free blocks to reuse?  Yes!  We can use 

a doubly-linked list.
2. Can we merge adjacent free blocks to keep large spaces available?  Yes!  We 

can coalesce on free().
3. Can we avoid always copying/moving data during realloc?
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Plan For Today
• Recap: Heap Allocators – Bump and Implicit
• Method 3: Explicit Free List Allocator
• Coalescing
• Break: Announcements
• In-Place Realloc
• Optimization



68

Realloc
• For the implicit allocator, we didn’t worry too much about realloc.  We always 

moved data when they requested a different amount of space.
• Note: realloc can grow or shrink the data size.

• But sometimes we may be able to keep the data in the same place. How?
• Case 1: size is growing, but we added padding to the block and can use that
• Case 2: size is shrinking, so we can use the existing block
• Case 3: size is growing, and current block isn’t big enough, but adjacent blocks are free.
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Realloc: Growing In Place
void *a = malloc(42);
...
void *b = realloc(a, 48);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

48
Used a + pad 16

Free

a’s earlier request was too small, so 
we added padding.  Now they are 
requesting a larger size we can 
satisfy with that padding!  So realloc
can return the same address.
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Realloc: Growing In Place
void *a = malloc(42);
...
void *b = realloc(a, 16);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

48
Used a + pad 16

Free

If a realloc is requesting to shrink, 
we can still use the same starting 
address.  

If we can, we should try to recycle 
the now-freed memory into another 
freed block.
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Realloc: Growing In Place
void *a = malloc(42);
...
void *b = realloc(a, 16);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

16
Used a 24

Free a 16
Free

If a realloc is requesting to shrink, 
we can still use the same starting 
address.  

If we can, we should try to recycle 
the now-freed memory into another 
freed block.
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Realloc: Growing In Place
void *a = malloc(42);
...
void *b = realloc(a, 72);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

48
Used a + pad 16

Free

Even with the padding, we don’t 
have enough space to satisfy the 
larger size.  But we have an adjacent 
neighbor that is free – let’s team up!
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Realloc: Growing In Place
void *a = malloc(42);
...
void *b = realloc(a, 72);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

72
Used a

Even with the padding, we don’t 
have enough space to satisfy the 
larger size.  But we have an adjacent 
neighbor that is free – let’s team up!

Now we can still return the same 
address.
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Realloc: Growing In Place
void *a = malloc(8);
...
void *b = realloc(a, 72);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

16
Used a + pad 16

Free
24

Free

You should combine with your right
neighbors as much as possible until 
we get enough space, or until we 
know we cannot get enough space.



75

Realloc: Growing In Place
void *a = malloc(8);
...
void *b = realloc(a, 72);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

40
Used a 24

Free

You should combine with your right
neighbors as much as possible until 
we get enough space, or until we 
know we cannot get enough space.
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Realloc: Growing In Place
void *a = malloc(8);
...
void *b = realloc(a, 72);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

72
Used a

You should combine with your right
neighbors as much as possible until 
we get enough space, or until we 
know we cannot get enough space.
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Realloc: Growing In Place
void *a = malloc(8);
...
void *b = realloc(a, 72);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

72
Used a

You should combine with your right
neighbors as much as possible until 
we get enough space, or until we 
know we cannot get enough space.

*burp*
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Realloc
• For the implicit allocator, we didn’t worry too much about realloc.  We always 

moved data when they requested a different amount of space.
• Note: realloc can grow or shrink the data size.

• But sometimes we may be able to keep the data in the same place. How?
• Case 1: size is growing, but we added padding to the block and can use that
• Case 2: size is shrinking, so we can use the existing block
• Case 3: size is growing, and current block isn’t big enough, but adjacent blocks are free.

• If you can’t do an in-place realloc, then you should move the data elsewhere.
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Assignment 7: Explicit Allocator
• Must have headers that track block information (size, status in-use or free) –

you can copy from your implicit version
• Must have an explicit free list managed as a doubly-linked list, using the first 

16 bytes of each free block’s payload for next/prev pointers.
• Must have a malloc implementation that searches the explicit list of free 

blocks.
• Must coalesce a free block in free() whenever possible with its immediate right 

neighbor.
• Must do in-place realloc when possible. Even if an in-place realloc is not 

possible, you should still absorb adjacent right free blocks as much as possible 
until you either can realloc in place, or can no longer absorb and must realloc
elsewhere.
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Plan For Today
• Recap: Heap Allocators – Bump and Implicit
• Method 3: Explicit Free List Allocator
• Coalescing
• Break: Announcements
• In-Place Realloc
• Optimization
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Optimization
• Optimization is the task of making your program faster or more efficient with 

space or time.  You’ve seen explorations of efficiency with Big-O notation!
• Targeted, intentional optimizations to alleviate bottlenecks can result in big 

gains.  But it’s important to only work to optimize where necessary.
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Optimization
Most of what you need to do with optimization can be summarized in 3 easy steps:

1) If doing something seldom and only on small inputs, do whatever is simplest to code, 
understand, and debug

2) If doing things thing a lot, or on big inputs, make the primary algorithm’s Big-O cost 
reasonable 

3) Let gcc do its magic from there
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GCC Optimization
• Today, we’ll be comparing two levels of optimization in the gcc compiler:
• gcc –O0  //mostly just literal translation of C
• gcc –O2  //enable nearly all reasonable optimizations 
• (we use –Og, like –O0 but with less needless use of the stack)

• There are other custom and more aggressive levels of optimization, e.g.:
• -O3     //more aggressive than O2, trade size for speed
• -Os //optimize for size
• -Ofast //disregard standards compliance (!!)

• Exhaustive list of gcc optimization-related flags:
• https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
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Example: Matrix Multiplication
Here’s a standard matrix multiply, a triply-nested for loop:

void mmm(double a[][DIM], double b[][DIM], double c[][DIM], int n) {

for (int i = 0; i < n; i++) {

for (int j = 0; j < n; j++) {

for (int k = 0; k < n; k++) {

c[i][j] += a[i][k]*b[k][j];

}

}

}

}

./mult // -O0 (no optimization)
matrix multiply 25^2: cycles   0.44M 
matrix multiply 50^2: cycles   3.13M 
matrix multiply 100^2: cycles  24.80M 

./mult_opt // -O2 (with optimization)
matrix multiply 25^2: cycles   0.11M (opt)
matrix multiply 50^2: cycles   0.47M (opt)
matrix multiply 100^2: cycles   3.67M (opt)
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GCC Optimizations
• Constant Folding
• Common Sub-expression Elimination
• Dead Code
• Strength Reduction
• Code Motion
• Tail Recursion
• Loop Unrolling
• Psychic Powers
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GCC Optimizations
• Constant Folding
• Common Sub-expression Elimination
• Dead Code
• Strength Reduction
• Code Motion
• Tail Recursion
• Loop Unrolling
• Psychic Powers (kidding.)
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Constant Folding
Constant Folding pre-calculates constants at compile-time where possible.

int seconds = 60 * 60 * 24 * n_days;

What is the consequence of this for you as a programmer?  What should you do 
differently or the same knowing that compilers can do this for you?
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Constant Folding
int CF(int param) {

char arr[0x55];

int a = 0x107;
int b = a * sizeof(arr);
int c = sqrt(2.0);
return a*param + (a + 0x15/c + strlen("hello")*b - 0x37)/4;

}
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Constant Folding: Before (-O0)
0000000000400726 <CF>:
400726:       55                      push   %rbp
400727:       53                      push   %rbx
400728:       48 83 ec 08             sub    $0x8,%rsp
40072c:       89 fd mov %edi,%ebp
40072e:       f2 0f 10 05 ba 05 00    movsd 0x5ba(%rip),%xmm0 
400735:       00
400736:       e8 c5 fe ff ff callq 400600 <sqrt@plt>
40073b:       f2 0f 2c c8             cvttsd2si %xmm0,%ecx
40073f:       69 ed 07 01 00 00       imul $0x107,%ebp,%ebp
400745:       b8 15 00 00 00          mov $0x15,%eax
40074a:       99                      cltd
40074b:       f7 f9                   idiv %ecx
40074d:       8d 98 07 01 00 00       lea    0x107(%rax),%ebx
400753:       bf e4 0c 40 00          mov $0x400ce4,%edi
400758:       e8 73 fe ff ff callq 4005d0 <strlen@plt>
40075d:       48 69 c0 53 57 00 00    imul $0x5753,%rax,%rax
400764:       48 63 db movslq %ebx,%rbx
400767:       48 8d 44 18 c9          lea    -0x37(%rax,%rbx,1),%rax
40076c:       48 c1 e8 02             shr $0x2,%rax
400770:       01 e8                   add    %ebp,%eax
400772:       48 83 c4 08             add    $0x8,%rsp
400776:       5b                      pop    %rbx
400777:       5d                      pop    %rbp
400778:       c3                      retq
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Constant Folding: After (-O2)
0000000000400800 <CF>:
400800:       69 c7 07 01 00 00       imul $0x107,%edi,%eax
400806:       05 61 6d 00 00          add    $0x6d61,%eax
40080b:       c3                      retq
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Common Sub-Expression Elimination
Common Sub-Expression Elimination prevents the recalculation of the same 
thing many times by doing it once and saving the result.

int a = (param2 + 0x107);
int b = param1 * (param2 + 0x107) + a;
return a * (param2 + 0x107) + b * (param2 + 0x107);
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Strength Reduction
Strength reduction changes divide to multiply, multiply to add/shift, and mod to 
AND to avoid using instructions that cost many cycles (multiply and divide).
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Assignment 7: Optimization
• Explore various optimizations you can make to your code to reduce instruction

count.
• More efficient Big-O for your algorithms
• Explore other ways to reduce instruction count

• Look for hotspots using callgrind
• Optimize using –O2
• And more…
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Plan For Today
• Recap: Heap Allocators – Bump and Implicit

• Method 3: Explicit Free List Allocator

• Coalescing

• Break: Announcements

• In-Place Realloc

• Optimization

Next time: CS107 recap and parting words


