
1
This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Marty Stepp, Cynthia Lee, Chris Gregg, and others.

CS107, Lecture 17
Wrap-Up / What’s Next?

2

Plan For Today
• Info: Final Exam
• Recap: Where We’ve Been
• Larger Applications
• What’s Next?
• Break
• Q&A

3

Plan For Today
• Info: Final Exam
• Recap: Where We’ve Been
• Larger Applications
• What’s Next?
• Break
• Q&A

4

Final Exam
• The final exam is Fri. 3/22 12:15-3:15PM in Hewlett 200 and Hewlett 201
• Last names A-G: Hewlett 201
• Last Names H-Z: Hewlett 200

• Covers all material from the quarter
• Closed-book, 1 2-sided page of notes permitted, C reference sheet provided,

Assembly reference sheet provided
• Administered via BlueBook software (on your laptop)
• Practice materials will be available on the course website
• If you need exam accommodations, please do your best to let us know by

Friday 3/15.
• If you need a laptop for the exam, you must let us know by Friday 3/15.

Limited charging outlets will be available for those who need them.

5

Plan For Today
• Info: Final Exam
• Recap: Where We’ve Been
• Larger Applications
• What’s Next?
• Break
• Q&A

6

We’ve covered a lot in just
10 weeks! Let’s take a look

back.

7

You’ll be able to…
• Manipulate bits and bytes and work within the limits of computer arithmetic
• Implement complex algorithms using C-strings
• Re-implement existing Unix tools yourself
• Write generic C code that works with a variety of data types
• Defuse a “bomb” program without ever seeing its source code
• Find security vulnerabilities in programs
• Create your own memory allocator to manage heap memory

8

First Day
/*
* hello.c
* This program prints a welcome message
* to the user.
*/

#include <stdio.h> // for printf

int main(int argc, char *argv[]) {
printf("Hello, world!\n");
return 0;

}

9

First Day
• The command-line is a text-based interface to navigate a computer, instead of

a Graphical User Interface (GUI).

Graphical User Interface Text-based interface

10

Our CS107 Journey

Bits and
Bytes

C Strings

Arrays
and

Pointers

Stack and
Heap

Generics

Floats

Assembly

Heap
Allocators

11

Bits And Bytes
Key Question: how are integer numbers represented by a computer? How do
we manipulate this representation?

12

Bits And Bytes
Key Question: why does this matter?
• Limitations of representation and arithmetic impact programs!
• We can also efficiently manipulate data using bits.

13

C Strings
Key Question: how can we manipulate text in C programs?
• Strings in C are arrays of characters ending with a null terminator!
• We can manipulate them using pointers and C library functions (many of which

you could probably implement).

index 0 1 2 3 4 5 6 7 8 9 10 11 12
character 'H' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!'

14

C Strings
Key Question: why does this matter?
• Understanding this representation is key to efficient string manipulation.
• This is how strings are represented in both low and high level languages!
• C++: https://www.quora.com/How-does-C++-implement-a-string
• Python: https://www.laurentluce.com/posts/python-string-objects-implementation/

https://www.quora.com/How-does-C++-implement-a-string
https://www.laurentluce.com/posts/python-string-objects-implementation/

15

Arrays and Pointers
• Arrays let us store ordered lists of information.
• Pointers let us pass addresses of data instead of the data itself.

Address Value
…

0x1f0 2
…

0x10 0x1f0
…

x

intPtr

main()

myFunc()

STACK

16

Stack And Heap
Key Question: How can we allocate memory with
lifetimes that we want?

Key Question: why does this matter?
• The stack and heap allow for two ways to store data in

our programs, each with their own tradeoffs, and it’s
crucial to understand the nuances of managing memory
in any program you write!

17

Generics
Key Question: how can we write code that works with data of any type?
• We can use void * to circumvent the type system, memcpy, etc. to copy

generic data, and function pointers to pass logic around.

Key Question: why does this matter?
• Working with any data type lets us write more generic, reusable code.
• Using generics helps us better understand the type system in C and other

languages, and where it can help and hinder our program.

18

Floating Point
Key Question: how are floating point numbers represented by a computer?

19

Floating Point
Key Question: why does this matter?
• IEEE floating point represents tradeoffs in representing floats with high

precision in a large range. These tradeoffs impact programs!

20

Assembly Language
Key Question: how does the computer execute our programs?
• GCC compiles our code into machine code instructions executable by our

processor.
• Our processor uses registers and instructions like mov to manipulate data.

21

Assembly Language
Key Question: why does this matter?
• We write C code because it is higher level

and transferrable across machines. But it is
not the representation executed by the
computer!
• Understanding how programs are compiled

and executed, as well as computer
architecture, is key to writing performant
programs (e.g. fewer lines of code is not
necessarily better).
• We can reverse engineer and exploit

programs at the assembly level!

22

Heap Allocators
Key Question: how is the heap managed? How do malloc/realloc/free work?
• A heap allocator manages a block of memory for the heap and completes

requests to use or give up memory space.

Key Question: why does this matter?
• Designing a heap allocator requires making many design decisions to optimize

it as much as possible.
• All languages have a “heap”, but manipulate it in different ways.

23

Our CS107 Journey

Bits and
Bytes

C Strings

Arrays
and

Pointers

Stack and
Heap

Generics

Floats

Assembly

Heap
Allocators

24

Course Goals
The goals for CS107 are for students to gain mastery of
• writing C programs with complex use of memory and pointers
• an accurate model of the address space and compile/runtime behavior of C

programs
to achieve competence in
• translating C to/from assembly
• writing programs that respect the limitations of computer arithmetic
• identifying bottlenecks and improving runtime performance
• writing code that correctly ports to other architectures
• working effectively in a Unix development environment
and have exposure to
• a working understanding of the basics of computer architecture

25

Plan For Today
• Info: Final Exam
• Recap: Where We’ve Been
• Larger Applications
• What’s Next?
• Break
• Q&A

26

Plan For Today
• Info: Final Exam
• Recap: Where We’ve Been
• Larger Applications
• CS107 Tools and Techniques
• CS107 Concepts

• What’s Next?
• Break
• Q&A

27

Tools and Techniques
• Unix and the command line
• Coding Style
• Debugging (GDB)
• Testing (Sanity Check)
• Memory Checking (Valgrind)
• Profiling (Callgrind)

28

Unix And The Command Line
Unix and command line tools are extremely popular tools outside of CS107 for:
• Running programs (web servers, python programs, remote programs…)
• Accessing remote servers (Amazon Web Services, Microsoft Azure, Heroku…)
• Programming embedded devices (Raspberry Pi, etc.)

Our goal for CS107 was to help you become proficient in navigating Unix

29

Coding Style
• Writing clean, readable code is crucial for any computer science project
• Unfortunately, a fair amount of existing code is poorly-designed/documented

Our goal for CS107 was to help you write with good coding style, and
read/understand/comment provided code.

30

Debugging (GDB)
• Debugging is a crucial skill for any computer scientist

• Our goal for CS107 was to help you become a better debugger

• narrow in on bugs

• diagnose the issue

• implement a fix

• Practically every project you work on will have debugging facilities
• Python: “PDB”

• IDEs: built-in debuggers (e.g. QT Creator, Eclipse)

• Web development: in-browser debugger

31

Testing (Sanity Check)
• Testing is a crucial skill for any computer scientist
• Our goal for CS107 was to help you become a better tester
• Writing targeted tests to validate correctness
• Use tests to prevent regressions
• Use tests to develop incrementally

32

Memory Checking and Profiling
• Memory checking and profiling are crucial for any computer scientist to

analyze program performance and increase efficiency.
• Many projects you work on will have profiling and memory analysis facilities:
• Mobile development: integrated tools (XCode Instruments, Android Profiler, etc.)
• Web development: in-browser tools

33

Tools
You’ll see manifestations of these tools throughout projects you work on. We
hope you can use your CS107 knowledge to take advantage of them!

34

Concepts
• C Language
• Bit-Level Representations
• Arrays and Pointers
• Memory Management
• Generics
• Assembly

35

Systems
How is an operating system implemented? (take CS140!)
• Threads
• User Programs
• Virtual Memory
• Filesystem
How is a compiler implemented? (take CS143!)
• Lexical analysis
• Parsing
• Semantic Analysis
• Code Generation
How can applications communicate over a network? (take CS110/CS144!)
• How can we weigh different tradeoffs of network architecture design?
• How can we effectively transmit bits across a network?

36

Systems
How can we write programs that execute multiple tasks simultaneously? (take
CS110!)
• Threads of execution
• ”Locks” to prevent simultaneous access

37

Machine Learning
Can we speed up machine learning training with reduced precision
computation?
• https://www.top500.org/news/ibm-takes-aim-at-reduced-precision-for-new-

generation-of-ai-chips/
• https://devblogs.nvidia.com/mixed-precision-training-deep-neural-networks/

How can we implement performant machine learning libraries?
• Popular tools such as TensorFlow and PyTorch are implemented using C!
• https://pytorch.org/blog/a-tour-of-pytorch-internals-1/
• https://www.tensorflow.org/guide/extend/architecture

https://www.top500.org/news/ibm-takes-aim-at-reduced-precision-for-new-generation-of-ai-chips/
https://devblogs.nvidia.com/mixed-precision-training-deep-neural-networks/
https://pytorch.org/blog/a-tour-of-pytorch-internals-1/
https://www.tensorflow.org/guide/extend/architecture

38

Web Development
How can we efficiently translate Javascript code to machine code?
• The Chrome V8 JavaScript engine converts Javascript into machine code for

computers to execute: https://medium.freecodecamp.org/understanding-the-
core-of-nodejs-the-powerful-chrome-v8-engine-79e7eb8af964
• The popular Node.js web server tool is built on Chrome V8

How can we compile programs into an efficient binary instruction format that
runs in a web browser?
• WebAssembly is an emerging standard instruction format that runs in

browsers: https://webassembly.org
• You can compile C/C++/other languages into WebAssembly for web execution

https://medium.freecodecamp.org/understanding-the-core-of-nodejs-the-powerful-chrome-v8-engine-79e7eb8af964
https://webassembly.org/

39

Programming Languages / Runtimes
How can programming languages and runtimes efficiently manage memory?
• Manual memory management (C/C++)

• Reference Counting (Python/Swift)

• Garbage Collection (Java)

How can we design programming languages to reduce the potential for
programmer error?
• Haskell/Swift ”Optionals”

How can we design portable programming languages?
• Java Bytecode: https://en.wikipedia.org/wiki/Java_bytecode

https://en.wikipedia.org/wiki/Java_bytecode

40

Theory
How can compilers output efficient machine code instructions for programs?
• Languages can be represented as regular expressions and context-free

grammars
• We can model programs as control-flow graphs for additional optimization

41

Security
How can we find / fix vulnerabilities at various levels in our programs?
• Understand machine-level representation and data manipulation
• Understand how a computer executes programs
• macOS High Sierra Root Login Bug: https://objective-

see.com/blog/blog_0x24.html

https://objective-see.com/blog/blog_0x24.html

42

Plan For Today
• Info: Final Exam
• Recap: Where We’ve Been
• Larger Applications
• What’s Next?
• Break
• Q&A

43

What’s Next?
• After CS107, you are prepared to take a variety of classes in various areas.

What are some options?

44

Where Are We?

CS 106B/X

Programming
Abstractions

CS 107/E

Computer
Organization and

Systems

CS 110

Principles of
Computer Systems

CS 103

Mathematical
Foundations of

Computing

CS 109

Intro to Probability
for Computer

Scientists

CS 161

Design and Analysis
of Algorithms

Theory
Sy

st
em

s

We are here

45

CS 110
• How can we implement multithreading in our

programs?
• How can multiple programs communicate with each

other?
• How can we implement distributed software systems

to do things like process petabytes of data?
• How can we maximally take advantage of the

hardware and operating system software available to
us?

Jerry Cain Chris Gregg

https://en.wikipedia.org/wiki/Multithreading_(computer_architecture)#/media/Fi
le:Multithreaded_process.svg

46

Other Courses
• CS140: Operating Systems
• CS143: Compilers
• CS144: Networking
• CS145: Databases
• CS166: Data Structures
• CS221: Artificial Intelligence
• CS246: Mining Massive Datasets
• EE108: Digital Systems Design
• EE180: Digital Systems Architecture

47

Plan For Today
• Info: Final Exam
• Recap: Where We’ve Been
• Larger Applications
• What’s Next?
• Break
• Q&A

48

Plan For Today
• Info: Final Exam
• Recap: Where We’ve Been
• Larger Applications
• What’s Next?
• Break
• Q&A

49

Thank you!

50

Course Evaluations
We hope you can take the time to fill out the end-quarter CS 107 course
evaluation. We sincerely appreciate any feedback you have about the course,
and read every piece of feedback we receive. We are always looking for ways to
improve!

Thank you!

