CS107, Lecture 2

Bits and Bytes; Integer Representations

reading:
Bryant & O’Hallaron, Ch. 2.2-2.3

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Marty Stepp, Cynthia Lee, Chris Gregg, and others.

Plan For Today

* Bits and Bytes

* Hexadecimal

* Integer Representations

* Unsigned Integers

 Signed Integers

* Casting and Combining Types

Demo: Unexpected
Behavior

Plan For Today

* Bits and Bytes

 Computers are built around the idea of two states: “on” and “off”. Transistors
represent this in hardware, and bits represent this in software!

One Bit At A Time

 We can combine bits, like with base-10 numbers, to represent more data. 8
bits = 1 byte.

 Computer memory is just a large array of bytes! It is byte-addressable; you
can’t address (store location of) a bit; only a byte.

* Computers still fundamentally operate on bits; we have just gotten more
creative about how to represent different data as bits!
* Images
* Audio
* Video
* Text
* And more...

5934

Digits 0-9 (0 to base-17)

e

7994

A° S tens ones
00660 \)(\&@d
A\ W

5934

t t t

oS tens ones

=5"1000 + 9*100 + 3*10 + 4*1

11

o
i
),
v
§.
0

10

Digits 0-1 (0 to base-17)

14

1011

eights fours twos ones

=1*8 + 04 + 12 + 1*1 = 11,

16

Most significant bit (MSB) Least significant bit (LSB)

~ /
1011

eights fours twos ones

=1*8 + 04 + 12 + 1*1 = 11,

17

Base 10 to Base 2

Question: What is 6 in base 27

* Strategy:
* What is the largest power of 2 < 6?

18

Base 10 to Base 2

Question: What is 6 in base 27

* Strategy:
* What is the largest power of 2 < 6? 22=4

19

Base 10 to Base 2

Question: What is 6 in base 27

* Strategy:
* What is the largest power of 2 < 6? 22=4
* Now, what is the largest power of 2 < 6 — 22?

20

Base 10 to Base 2

Question: What is 6 in base 27

* Strategy:
* What is the largest power of 2 < 6? 22=4
* Now, what is the largest power of 2 < 6 —22? 21=2

011 _

21

Base 10 to Base 2

Question: What is 6 in base 27

* Strategy:
* What is the largest power of 2 < 6? 22=4

* Now, what is the largest power of 2 < 6 —22? 21=2
¢ 6-22-21=0!

011 _

22

Base 10 to Base 2

Question: What is 6 in base 27

* Strategy:
* What is the largest power of 2 < 6? 22=4

* Now, what is the largest power of 2 < 6 —22? 21=2
¢ 6-22-21=0!

0110

23

Base 10 to Base 2

Question: What is 6 in base 27

* Strategy:
* What is the largest power of 2 < 6? 22=4

* Now, what is the largest power of 2 < 6 —22? 21=2
¢ 6-22-21=0!

23 22 2 20
=0"8+1"4+1"2+0"1 =6

24

Practice: Base 2 to Base 10

What is the base-10 representation of 1010,?
a) 20

b) 101

c) 10

d) 5

e) Other

25

Practice: Base 10 to Base 2

What is the base-2 representation of 147
a) 1111,
b) 1110,
c) 1010,
d) Other

26

Practice: Byte Values

* What is the minimum and maximum base-10 value a single byte (8 bits) can
store?

27

Practice: Byte Values

* What is the minimum and maximum base-10 value a single byte (8 bits) can
store? minimum =0 maximum = ?

28

Practice: Byte Values

* What is the minimum and maximum base-10 value a single byte (8 bits) can
store? minimum =0 maximum = ?

1111111

2%

29

Practice: Byte Values

* What is the minimum and maximum base-10 value a single byte (8 bits) can
store? minimum =0 maximum = ?

1111111

e Strategy 1: 1*27 + 1*26 + 1%2°>+ 1*2%4 + 1%*23+ 1*22+ 1*21 + 1*20= 255

2%

30

Practice: Byte Values

* What is the minimum and maximum base-10 value a single byte (8 bits) can
store? minimum =0 maximum = 255

1111111

e Strategy 1: 1*27 + 1*26 + 1%2°>+ 1*2%4 + 1%*23+ 1*22+ 1*21 + 1*20= 255
* Strategy 2: 28— 1 = 255

2%

31

Multiplying by Base

1453 x 10 = 14530
1101, x 2 = 11010

Key Idea: inserting O at the end multiplies by the base!

Plan For Today

* Hexadecimal

 When working with bits, oftentimes we have large numbers with 32 or 64 bits.
* Instead, we’ll represent bits in base-16 instead; this is called hexadecimal.

0110 1010 0011

34

 When working with bits, oftentimes we have large numbers with 32 or 64 bits.
* Instead, we’ll represent bits in base-16 instead; this is called hexadecimal.

0110 1010 0011

0-15 0-15 0-15

35

 When working with bits, oftentimes we have large numbers with 32 or 64 bits.
* Instead, we’ll represent bits in base-16 instead; this is called hexadecimal.

0-15 0-15 0-15

This is a base-16 number!

36

* Hexadecimal is base-16, so we need digits for 1-15. How do we do this?

0123456789 abcdeftf

10 11 12 13 14 15

37

Hexadecimal

Hex digit 0 1 2 3 4 5 6 7
Decimal value 0 1 2 3 4 5 6 7
Binary value 0000 0001 0010 0011 0100 0101 0110 0111

Hex digit 8 9 A B C D E F
Decimal value 8 9 10 11 12 13 14 15
Binary value 1000 1001 1010 1011 1100 1101 1110 1111

38

* In C, we commonly distinguish hexadecimal numbers by prefixing them with
X, and binary numbers by prefixing them with @b.

* E.g. Oxf5is0bl1110101

Oxft 5
oY

39

Practice: Hexadecimal to Binary

What is @x173A in binary?

40

Practice: Hexadecimal to Binary

What is @x173A in binary?

Hexadecimal 1 7 3 A
Binary 0001 0111 0011 1010

41

Practice: Hexadecimal to Binary

What is ©b1111001010110110110011 in hexadecimal? (Hint: start from the
right)

42

Practice: Hexadecimal to Binary

What is ©b1111001010110110110011 in hexadecimal? (Hint: start from the
right)

Binary 11 1100 1010 1101 1011 0011
Hexadecimal 3 C A D B 3

43

Plan For Today

* Integer Representations

44

Number Representations

* Unsigned Integers: positive and O integers. (e.g. 0, 1, 2, ... 99999...
* Signed Integers: negative, positive and O integers. (e.g. ...-2, -1, 0, 1,... 9999...)

* Floating Point Numbers: real numbers. (e,g. 0.1, -12.2, 1.5x1012)

45

Number Representations

* Unsigned Integers: positive and 0 integers. (e.g. 0, 1, 2, ... 99999...
* Signed Integers: negative, positive and O integers. (e.g. ...-2, -1, 0, 1,... 9999...)

* Floating Point Numbers: real numbers. (e,g. 0.1, -12.2, 1.5x1012)

L Stay tuned until week 5!

46

32-Bit and 64-Bit

m

32 64

\ bit J| bit |

B

* In the early 2000’s, most computers were 32-bit. This means that pointers in
programs were 32 bits.

 32-bit pointers could store a memory address from 0 to 232-1, for a total of 232
bytes of addressable memory. This equals 4 Gigabytes, meaning that 32-bit
computers could have at most 4GB of memory (RAM)!

* Because of this, computers transitioned to 64-bit. This means that pointers in
programs were 64 bits.

* 64-bit pointers could store a memory address from 0 to 2%4-1, for a total of 264
bytes of addressable memory. This equals 16 Exabytes, meaning that 64-bit
computers could have at most 1024*1024*1024 GB of memory (RAM)! 47

Number Representations

C declaration Bytes
Signed Unsigned 32-bit 64-bit
[signed] char unsigned char 1 1
short unsigned short 2 2
int unsigned 4 4
long unsigned long 4 8
int32_t uint32_t 4 4
int64 t uint64 t 8 8
char * 4 8
float 4 4
double 8 8

48

Number Representations

C declaration Bytes
Signed Unsigned 32-bit
[signed] char unsigned char 1 1
short unsigned short 2 2
int unsigned 4 4
long unsigned long 4 8 Myth
int32_t uint32_t 4 4
int64 t uint64 t 8 8
char * 4 8
float 4 4
double 8 8

49

Plan For Today

* Unsigned Integers

50

Unsigned Integers

* An unsigned integer is O or a positive integer (no negatives).

* We have already discussed converting between decimal and binary, which is a
nice 1:1 relationship. Examples:

0b0001 =1
0b0101 = 5
0b1011 = 11
0bl111 = 15

* The range of an unsigned number is 0 - 2% -1, where w is the number of bits.
E.g. a 32-bit integer can represent 0 to 232 -1 (4,294,967,295).

51

Unsigned Integers

15 L

0000

14 1111 0001

1110 0010

1101 0011

4-bit
1100 unsigned integer 0100
representation

52

Plan For Today

 Signed Integers

53

Signhed Integers

* An signhed integer is a negative integer, O, or a positive integer.
* Problem: How can we represent negative and positive numbers in binary?

54

Signhed Integers

* An signhed integer is a negative integer, O, or a positive integer.
* Problem: How can we represent negative and positive numbers in binary?

ldea: let's reserve the most
significant bit to store the sign.

Sign Magnitude Representation

0110
1011
W

negative 3

Sign Magnitude Representation

0000
T _—
1000 =
e

negative O

Sign Magnitude Representation

1000=-0 0000=0
1001=-1 0001=1
1010=-2 0010=2
1011=-3 0011=3
1100=-4 0100=4
1101=-5 0101=5
1110=-6 0110=6
1111=-7 0111=7

* We’ve only represented 15 of our 16 available numbers!

58

Sign Magnitude Representation

* Pro: easy to represent, and easy to convert to/from decimal.
* Con: +-0 is not intuitive
* Con: we lose a bit that could be used to store more numbers

e Con: arithmetic is tricky: we need to find the sign, then maybe subtract
(borrow and carry, etc.), then maybe change the sign...this might get ugly!

59

A Better Idea

* |deally, binary addition would just work regardless of whether the number is

0101
+ 0707077

0000

60

A Better Idea

* |deally, binary addition would just work regardless of whether the number is

o
+1011

0000

61

A Better Idea

* |deally, binary addition would just work regardless of whether the number is

0011
+ 0707077

0000

62

A Better Idea

* |deally, binary addition would just work regardless of whether the number is

S
+1101

0000

63

A Better Idea

* |deally, binary addition would just work regardless of whether the number is

0000
+ 270707

0000

64

A Better Idea

* |deally, binary addition would just work regardless of whether the number is

.
{0000

0000

65

A Better Idea

CRCmTn — EECT—

0000 0000 1000 1000
1 0001 1111 9 1001 (same as -7!) NA
9] 0010 1110 10 1010 (same as -6!) NA
3 0011 1101 11 1011 (same as -5!) NA
4 0100 1100 12 1100 (same as -4!) NA
5 0101 1011 13 1101 (same as -3!) NA
6 0110 1010 14 1110 (same as -2!) NA

7 0111 1001 15 1111 (same as -1!) NA

66

There Seems Like a Pattern Here...

0101 0011 0000
+1011 1101 0000

0000 0000 0000

There Seems Like a Pattern Here...

A binary number plus its eis all 1s. Add 1 to this to all 1s and get 0!

0101 1111
+1010 {0001

1111 0000

Another Trick

* To find the negative equivalent of a number, work right-to-left and write down
all digits through when you reach a 1. Then, invert the rest of the digits.

100100
+ 2707070707

000000

69

Another Trick

* To find the negative equivalent of a number, work right-to-left and write down
all digits through when you reach a 1. Then, invert the rest of the digits.

100100
+277100
000000

70

Another Trick

* To find the negative equivalent of a number, work right-to-left and write down
all digits through when you reach a 1. Then, invert the rest of the digits.

100100
+011100

000000

/1

Two’'s Complement

0000

1111 0001

1110 0010

1101 0011

4-bit

two's complement
signed integer

representation

1100 0100

72

Two’'s Complement

* In two’s complement, we represent a 1 O 1
positive number as itself, and its
negative equivalent as the two’s 2 1111 9999 o001 2

complement of itself.

1110 0010

* The two’s complement of a number is -3
the binary digits inverted, plus 1.

1101 0011

4-pit
two's complement

* This works to convert from positive to 4T o signed integer 010 [4
negative, and back from negative to representation
positive! 5 -

-8 73

Two’'s Complement

e Con: more difficult to represent, and 0
difficult to convert to/from decimal and
between positive and negative. -2

0000

1111 0001

1110 0010

* Pro: only 1 representation for O!

1101 0011

* Pro: all bits are used to represent as

. 4-bit
many numbers as possible

two's complement
signed integer
representation

1100 0100

* Pro: it turns out that the most significant
bit still indicates the sign of a number.

* Pro: arithmetic is easy: we just add!

-8 74

Two’'s Complement

* Adding two numbers is just...adding! There is no special case needed for
negatives. E.g. whatis 2 +-57

0010 =2
+1011 -

1101 -3

75

Two’'s Complement

e Subtracting two numbers is just performing the two’s complement on one of
them and then adding. E.g. 4 -5 =-1.

0100 0100 4
-0101 o, +1011 -0

M1 -

Two’'s Complement

* Multiplying two numbers is just multiplying, and discarding overflow digits.
E.g.-2x-3=6.

1110 (-2)
x1101 (-3)
1110
0000
1110
+1110
10110110 (6)

77

Practice: Two’'s Complement

What are the negative or positive equivalents of the numbers below?
a) -4(1100)
b) 7(0111)
c) 3(0011)
d) -8 (1000)

78

Practice: Two’'s Complement

What are the negative or positive equivalents of the numbers below?
a) -4(1100) y . 1

b) 7(0111) P
c) 3(0011)
d) -8 (1000)

0000

1111 0001

1110 0010

1101 0011

4-pit

two's complement
signed integer

representation

1100 0100

79

Plan For Today

* Break: Announcements

80

Announcements

* Sign up for Piazza on the Help page if you haven’t already!
* AssignO released earlier this week, due Mon.
* Lab signups opened earlier this week, start next week.

e Please send course staff OAE letters for accommodations!

81

Plan For Today

e Casting and Combining Types

82

Overflow and Underflow

* If you exceed the maximum value of your bit representation, you wrap around
or overflow back to the smallest bit representation.

©b1111 + 0bl = 0bo0OO

* If you go below the minimum value of your bit representation, you wrap
around or underflow back to the largest bit representation.

©boooo - 0bl = Obl1ll1l

83

. Width

Type Width (bits |Min in hex (name) Max in hex (name
yp (bytes) \ ()
char 1 8 80 (CHAR MIN) 7F (CHAR_ MAX)
unsigned char (1 8 0 FF (UCHAR MAX)
short 2 16 8000 (SHRT MIN) 7FFF (SHRT MAX)
unsigned 2 16 0 FFFF (USHRT MAX)
short _
int 32 80000000 (INT MIN) 7JFFFFFFF (INT MAX)
unsigned int 32 0 FFFFFFFF (UINT MAX)

8000000000000000 JFFFFFFFFFFFFEFFF
long 8 64

(LONG_MIN) (LONG_MAX)
unsigned long |8 64 0 FFFFFFFFFFFFFEFEF

(ULONG_MAX) 84

Overflow and Underflow

+1
111...111 000...000 +1
111...110 000...001 «—
111...101 000...010
111...100 000...011

100...010 011...101
100...001 011...110
100...000 011...111

+1

85

At which points can overflow occur for

signed and unsigned int? (assume binary values
shown are all 32 bits)

A. Signed and unsigned can both overflow
at points Xand Y

B. Signed can overflow only at X, unsigned
only atY

C. Signed can overflow only at Y, unsigned
only at X

D. Signed can overflow at X and Y,
unsigned only at X

E. Other

111...111 000...000
111...110 000...001

111...101 000...010
111...100 000...011

100...010 011...101
100...001 011...110
100...000 011...111

86

Unsigned Integers

111...111 000...000
111...110 000...001

111...101 000...010
111...100 000...011

Discontinuity
means overflow
possible here

SJoquinu 3ANISOd buisealou|

More increasing positive numbers

100...010 011...101
100...001 011...11
100...000 011...111

87

Overflow In Practice: PSY

PSY - GANGNAM STYLE (Z'&AEHY) MV

—

officialpsy
_ﬁ Pl D Subscrive

+ - , l‘ ,l

-2142584554

YouTube: “We never thought a video would be watched in numbers
greater than a 32-bit integer (=2,147,483,647 views), but that was before
we met PSY. "Gangnam Style" has been viewed so many times we had to
upgrade to a 64-bit integer (9,223,372,036,854,775,808)!”

89

Overflow In Practice: Timestamps

* Many systems store timestamps as the number of seconds since Jan. 1, 1970
in a signhed 32-bit integer.

* Problem: the latest timestamp that can be represented this way is 3:14:07 UTC
on Jan. 13 2038!

90

Underflow In Practice: Gandhi

* In the game “Civilization”, each
civilization leader had an
“aggression” rating. Gandhi was
meant to be peaceful, and had a
score of 1.

* If you adopted “democracy”, all

players’ aggression reduced by 2.

Gandhi’s went from 1 to 255!

* Gandhi then became a big fan of
nuclear weapons.

and ‘K,
Our wor
with RU.

https://kotaku.com/why-gandhi-is-such-an-asshole-in-civilization-1653818245

91

printf and Integers

* There are 3 placeholders for 32-bit integers that we can use:
* %d: signed 32-bit int
* %u: unsigned 32-bit int
* %x: hex 32-bit int

* As long as the value is a 32-bit type, printf will treat it according to the
placeholder!

92

* What happens at the byte level when we cast between variable types? The
bytes remain the same! This means they may be interpreted differently
depending on the type.

int v = -12345;
unsigned int uv = v;
printf("v = %d, uv = %u\n", v, uv);

This prints out: "v = -12345, uv = 4294954951". Why?

93

* What happens at the byte level when we cast between variable types? The
bytes remain the same! This means they may be interpreted differently
depending on the type.

int v = -12345;
unsigned int uv = v;
printf("v = %d, uv = %u\n", v, uv);

The bit representation for -12345 is ©b11000000111001.
If we treat this binary representation as a positive number, it’s huge!

94

0000

1111 0001

1110 0010

1101 0011

4-pbit

1100 twq S Complement
signed integer
representation

0100

0101

15 1

14 0000

1111 0001

1110 0010

13

1101 0011

4-bit
12— 1100 unsigned integer 0100+ 4
representation
0101
11 5

95

Comparisons Between Different Types

* Be careful when comparing signed and unsigned integers. C will implicitly
cast the signed argument to unsigned, and then performs the operation
assuming both numbers are non-negative.

Expression Type Evaluation
0 == 0U

-1 <0

-1 < 0U

2147483647 > -2147483647 - 1
21474836470 > -2147483647 - 1
2147483647 > (int)2147483648U
-1 > =2

(unsigned)-1 > -2

96

Comparisons Between Different Types

* Be careful when comparing signed and unsigned integers. C will implicitly
cast the signed argument to unsigned, and then performs the operation
assuming both numbers are non-negative.

Expression Type Evaluation
0 == 0U Unsigned 1
-1 <0 Signed 1
-1 < 0U Unsigned 0
2147483647 > -2147483647 - 1 Signed 1
21474836470 > -2147483647 - 1 Unsigned 0
2147483647 > (int)2147483648U Signed 1
-1 > =2 Signed 1
(unsigned)-1 > -2 Unsigned 1

97

Comparisons Between Different Types

Which many of the following statements are true? (assume that
variables are set to values that place them in the spots shown)

111...111 000...000
s3 > u3
u2 > u4
s2 > sS4
sl > s2
ul > u2
sl > u3

100...000 0O11...111
98

Comparisons Between Different Types

Which many of the following statements are true? (assume that
variables are set to values that place them in the spots shown)

111...111 000...000
s3 > u3 - true
u2 > u4 - true
s2 > s4 - false
sl > s2 - true
ul > u2 - true
sl > u3 - true

100...000 0O11...111
99

* Bits and Bytes

* Hexadecimal

* Integer Representations

* Unsigned Integers

 Signed Integers

* Break: Announcements

* Casting and Combining Types

Next time: Boolean logic and bit operations

100

