
1
This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Marty Stepp, Cynthia Lee, Chris Gregg, and others.

CS107, Lecture 2
Bits and Bytes; Integer Representations

reading:
Bryant & O’Hallaron, Ch. 2.2-2.3

2

Plan For Today
• Bits and Bytes
• Hexadecimal
• Integer Representations
• Unsigned Integers
• Signed Integers
• Casting and Combining Types

3

Demo: Unexpected
Behavior

4

Plan For Today
• Bits and Bytes
• Hexadecimal
• Integer Representations
• Unsigned Integers
• Signed Integers
• Break: Announcements
• Casting and Combining Types

5

0

6

1

7

Bits
• Computers are built around the idea of two states: “on” and “off”. Transistors

represent this in hardware, and bits represent this in software!

8

One Bit At A Time
• We can combine bits, like with base-10 numbers, to represent more data. 8

bits = 1 byte.
• Computer memory is just a large array of bytes! It is byte-addressable; you

can’t address (store location of) a bit; only a byte.
• Computers still fundamentally operate on bits; we have just gotten more

creative about how to represent different data as bits!
• Images
• Audio
• Video
• Text
• And more…

9

Base 10

5 9 3 4
Digits 0-9 (0 to base-1)

10

Base 10

5 9 3 4
onestens

hundreds

thousands

11

Base 10

5 9 3 4
onestens

hundreds

thousands

= 5*1000 + 9*100 + 3*10 + 4*1

12

Base 10

5 9 3 4
100101102103

13

Base 10

5 9 3 4
012310X:

14

Base 2

1 0 1 1
01232X:

Digits 0-1 (0 to base-1)

15

Base 2

1 0 1 1
20212223

16

Base 2

1 0 1 1
onestwosfourseights

= 1*8 + 0*4 + 1*2 + 1*1 = 1110

17

Base 2

1 0 1 1
onestwosfourseights

= 1*8 + 0*4 + 1*2 + 1*1 = 1110

Most significant bit (MSB) Least significant bit (LSB)

18

Base 10 to Base 2
Question: What is 6 in base 2?
• Strategy:
• What is the largest power of 2 ≤ 6?

19

Base 10 to Base 2

_ _ _ _

Question: What is 6 in base 2?
• Strategy:

• What is the largest power of 2 ≤ 6? 22=4

20212223

10

20

Base 10 to Base 2

_ _ _ _

Question: What is 6 in base 2?
• Strategy:

• What is the largest power of 2 ≤ 6? 22=4
• Now, what is the largest power of 2 ≤ 6 – 22?

20212223

10

21

Base 10 to Base 2

_ _ _ _

Question: What is 6 in base 2?
• Strategy:

• What is the largest power of 2 ≤ 6? 22=4
• Now, what is the largest power of 2 ≤ 6 – 22? 21=2

20212223

10 1

22

Base 10 to Base 2

_ _ _ _

Question: What is 6 in base 2?
• Strategy:

• What is the largest power of 2 ≤ 6? 22=4
• Now, what is the largest power of 2 ≤ 6 – 22? 21=2
• 6 – 22 – 21 = 0!

20212223

10 1

23

Base 10 to Base 2

_ _ _ _

Question: What is 6 in base 2?
• Strategy:

• What is the largest power of 2 ≤ 6? 22=4
• Now, what is the largest power of 2 ≤ 6 – 22? 21=2
• 6 – 22 – 21 = 0!

20212223

10 1 0

24

Base 10 to Base 2

_ _ _ _

Question: What is 6 in base 2?
• Strategy:

• What is the largest power of 2 ≤ 6? 22=4
• Now, what is the largest power of 2 ≤ 6 – 22? 21=2
• 6 – 22 – 21 = 0!

20212223

10 1 0
= 0*8 + 1*4 + 1*2 + 0*1 = 6

25

Practice: Base 2 to Base 10
What is the base-10 representation of 10102?
a) 20
b) 101
c) 10
d) 5
e) Other

26

Practice: Base 10 to Base 2
What is the base-2 representation of 14?
a) 11112

b) 11102

c) 10102

d) Other

27

Practice: Byte Values
• What is the minimum and maximum base-10 value a single byte (8 bits) can

store?

28

Practice: Byte Values
• What is the minimum and maximum base-10 value a single byte (8 bits) can

store? minimum = 0 maximum = ?

29

Practice: Byte Values
• What is the minimum and maximum base-10 value a single byte (8 bits) can

store? minimum = 0 maximum = ?

11111111
2x: 7 6 5 4 3 2 1 0

30

Practice: Byte Values
• What is the minimum and maximum base-10 value a single byte (8 bits) can

store? minimum = 0 maximum = ?

• Strategy 1: 1*27 + 1*26 + 1*25 + 1*24 + 1*23+ 1*22 + 1*21 + 1*20 = 255

11111111
2x: 7 6 5 4 3 2 1 0

31

Practice: Byte Values
• What is the minimum and maximum base-10 value a single byte (8 bits) can

store? minimum = 0 maximum = 255

• Strategy 1: 1*27 + 1*26 + 1*25 + 1*24 + 1*23+ 1*22 + 1*21 + 1*20 = 255
• Strategy 2: 28 – 1 = 255

11111111
2x: 7 6 5 4 3 2 1 0

32

Multiplying by Base

1453 x 10 = 14530
11012 x 2 = 11010
Key Idea: inserting 0 at the end multiplies by the base!

33

Plan For Today
• Bits and Bytes
• Hexadecimal
• Integer Representations
• Unsigned Integers
• Signed Integers
• Break: Announcements
• Casting and Combining Types

34

Hexadecimal
• When working with bits, oftentimes we have large numbers with 32 or 64 bits.
• Instead, we’ll represent bits in base-16 instead; this is called hexadecimal.

0110 1010 0011

35

Hexadecimal
• When working with bits, oftentimes we have large numbers with 32 or 64 bits.
• Instead, we’ll represent bits in base-16 instead; this is called hexadecimal.

0110 1010 0011
0-150-150-15

36

Hexadecimal
• When working with bits, oftentimes we have large numbers with 32 or 64 bits.
• Instead, we’ll represent bits in base-16 instead; this is called hexadecimal.

0-150-150-15

This is a base-16 number!

37

Hexadecimal
• Hexadecimal is base-16, so we need digits for 1-15. How do we do this?

0 1 2 3 4 5 6 7 8 9 a b c d e f
10 11 12 13 14 15

38

Hexadecimal

39

Hexadecimal
• In C, we commonly distinguish hexadecimal numbers by prefixing them with
0x, and binary numbers by prefixing them with 0b.

• E.g. 0xf5 is 0b11110101

0x f 5
1111 0101

40

Practice: Hexadecimal to Binary
What is 0x173A in binary?

41

Practice: Hexadecimal to Binary
What is 0x173A in binary?

42

Practice: Hexadecimal to Binary
What is 0b1111001010110110110011 in hexadecimal? (Hint: start from the
right)

43

Practice: Hexadecimal to Binary
What is 0b1111001010110110110011 in hexadecimal? (Hint: start from the
right)

44

Plan For Today
• Bits and Bytes
• Hexadecimal
• Integer Representations
• Unsigned Integers
• Signed Integers
• Break: Announcements
• Casting and Combining Types

45

Number Representations
• Unsigned Integers: positive and 0 integers. (e.g. 0, 1, 2, … 99999…
• Signed Integers: negative, positive and 0 integers. (e.g. …-2, -1, 0, 1,… 9999…)

• Floating Point Numbers: real numbers. (e,g. 0.1, -12.2, 1.5x1012)

46

Number Representations
• Unsigned Integers: positive and 0 integers. (e.g. 0, 1, 2, … 99999…
• Signed Integers: negative, positive and 0 integers. (e.g. …-2, -1, 0, 1,… 9999…)

• Floating Point Numbers: real numbers. (e,g. 0.1, -12.2, 1.5x1012)
Stay tuned until week 5!

47

32-Bit and 64-Bit

• In the early 2000’s, most computers were 32-bit. This means that pointers in
programs were 32 bits.
• 32-bit pointers could store a memory address from 0 to 232-1, for a total of 232

bytes of addressable memory. This equals 4 Gigabytes, meaning that 32-bit
computers could have at most 4GB of memory (RAM)!
• Because of this, computers transitioned to 64-bit. This means that pointers in

programs were 64 bits.
• 64-bit pointers could store a memory address from 0 to 264-1, for a total of 264

bytes of addressable memory. This equals 16 Exabytes, meaning that 64-bit
computers could have at most 1024*1024*1024 GB of memory (RAM)!

48

Number Representations

49

Number Representations

Myth

50

Plan For Today
• Bits and Bytes
• Hexadecimal
• Integer Representations
• Unsigned Integers
• Signed Integers
• Break: Announcements
• Casting and Combining Types

51

Unsigned Integers
• An unsigned integer is 0 or a positive integer (no negatives).
• We have already discussed converting between decimal and binary, which is a

nice 1:1 relationship. Examples:
0b0001 = 1
0b0101 = 5
0b1011 = 11
0b1111 = 15

• The range of an unsigned number is 0 → 2w - 1, where w is the number of bits.
E.g. a 32-bit integer can represent 0 to 232 – 1 (4,294,967,295).

52

Unsigned Integers

53

Plan For Today
• Bits and Bytes
• Hexadecimal
• Integer Representations
• Unsigned Integers
• Signed Integers
• Break: Announcements
• Casting and Combining Types

54

Signed Integers
• An signed integer is a negative integer, 0, or a positive integer.
• Problem: How can we represent negative and positive numbers in binary?

55

Signed Integers
• An signed integer is a negative integer, 0, or a positive integer.
• Problem: How can we represent negative and positive numbers in binary?

Idea: let’s reserve the most
significant bit to store the sign.

56

Sign Magnitude Representation

0110
positive 6

1011
negative 3

57

Sign Magnitude Representation

0000
positive 0

1000
negative 0

!

58

Sign Magnitude Representation

• We’ve only represented 15 of our 16 available numbers!

1 000 = -0
1 001 = -1
1 010 = -2
1 011 = -3
1 100 = -4
1 101 = -5
1 110 = -6
1 111 = -7

0 000 = 0
0 001 = 1
0 010 = 2
0 011 = 3
0 100 = 4
0 101 = 5
0 110 = 6
0 111 = 7

59

Sign Magnitude Representation
• Pro: easy to represent, and easy to convert to/from decimal.
• Con: +-0 is not intuitive
• Con: we lose a bit that could be used to store more numbers
• Con: arithmetic is tricky: we need to find the sign, then maybe subtract

(borrow and carry, etc.), then maybe change the sign…this might get ugly!

60

A Better Idea
• Ideally, binary addition would just work regardless of whether the number is

positive or negative.

0101
????
0000
+

61

A Better Idea
• Ideally, binary addition would just work regardless of whether the number is

positive or negative.

0101
1011
0000
+

62

A Better Idea
• Ideally, binary addition would just work regardless of whether the number is

positive or negative.

0011
????
0000
+

63

A Better Idea
• Ideally, binary addition would just work regardless of whether the number is

positive or negative.

0011
1101
0000
+

64

A Better Idea
• Ideally, binary addition would just work regardless of whether the number is

positive or negative.

0000
????
0000
+

65

A Better Idea
• Ideally, binary addition would just work regardless of whether the number is

positive or negative.

0000
0000
0000
+

66

A Better Idea
Decimal Positive Negative

0 0000 0000

1 0001 1111

2 0010 1110

3 0011 1101

4 0100 1100

5 0101 1011

6 0110 1010

7 0111 1001

Decimal Positive Negative

8 1000 1000

9 1001 (same as -7!) NA

10 1010 (same as -6!) NA

11 1011 (same as -5!) NA

12 1100 (same as -4!) NA

13 1101 (same as -3!) NA

14 1110 (same as -2!) NA

15 1111 (same as -1!) NA

67

There Seems Like a Pattern Here…

0101
1011
0000
+

0011
1101
0000
+

0000
0000
0000
+

• The negative number is the positive number inverted, plus one!

68

There Seems Like a Pattern Here…

A binary number plus its inverse is all 1s. Add 1 to this to carry over all 1s and get 0!

0101
1010
1111
+

1111
0001
0000
+

69

Another Trick
• To find the negative equivalent of a number, work right-to-left and write down

all digits through when you reach a 1. Then, invert the rest of the digits.

100100
??????
000000
+

70

Another Trick
• To find the negative equivalent of a number, work right-to-left and write down

all digits through when you reach a 1. Then, invert the rest of the digits.

100100
???100
000000
+

71

Another Trick
• To find the negative equivalent of a number, work right-to-left and write down

all digits through when you reach a 1. Then, invert the rest of the digits.

100100
011100
000000
+

72

Two’s Complement

73

Two’s Complement
• In two’s complement, we represent a

positive number as itself, and its
negative equivalent as the two’s
complement of itself.
• The two’s complement of a number is

the binary digits inverted, plus 1.
• This works to convert from positive to

negative, and back from negative to
positive!

74

Two’s Complement
• Con: more difficult to represent, and

difficult to convert to/from decimal and
between positive and negative.
• Pro: only 1 representation for 0!
• Pro: all bits are used to represent as

many numbers as possible
• Pro: it turns out that the most significant

bit still indicates the sign of a number.
• Pro: arithmetic is easy: we just add!

75

Two’s Complement
• Adding two numbers is just…adding! There is no special case needed for

negatives. E.g. what is 2 + -5?

0010
1011
1101
+

2

-5

-3

76

Two’s Complement
• Subtracting two numbers is just performing the two’s complement on one of

them and then adding. E.g. 4 – 5 = -1.

0100
0101-

4

5
0100
1011
1111
+

4

-5

-1

77

Two’s Complement
• Multiplying two numbers is just multiplying, and discarding overflow digits.

E.g. -2 x -3 = 6.

1110 (-2)
x1101 (-3)

1110
0000

1110
+1110
10110110 (6)

78

Practice: Two’s Complement
What are the negative or positive equivalents of the numbers below?
a) -4 (1100)
b) 7 (0111)
c) 3 (0011)
d) -8 (1000)

79

Practice: Two’s Complement
What are the negative or positive equivalents of the numbers below?
a) -4 (1100)
b) 7 (0111)
c) 3 (0011)
d) -8 (1000)

80

Plan For Today
• Bits and Bytes
• Hexadecimal
• Integer Representations
• Unsigned Integers
• Signed Integers
• Break: Announcements
• Casting and Combining Types

81

Announcements
• Sign up for Piazza on the Help page if you haven’t already!
• Assign0 released earlier this week, due Mon.
• Lab signups opened earlier this week, start next week.
• Please send course staff OAE letters for accommodations!

82

Plan For Today
• Bits and Bytes
• Hexadecimal
• Integer Representations
• Unsigned Integers
• Signed Integers
• Break: Announcements
• Casting and Combining Types

83

Overflow and Underflow
• If you exceed the maximum value of your bit representation, you wrap around

or overflow back to the smallest bit representation.

0b1111 + 0b1 = 0b0000

• If you go below the minimum value of your bit representation, you wrap
around or underflow back to the largest bit representation.

0b0000 - 0b1 = 0b1111

84

Min and Max Integer Values
Type Width

(bytes)

Width
(bits
)

Min in hex (name) Max in hex (name)

char 1 8 80 (CHAR_MIN) 7F (CHAR_MAX)
unsigned char 1 8 0 FF (UCHAR_MAX)

short 2 16 8000 (SHRT_MIN) 7FFF (SHRT_MAX)
unsigned
short

2 16 0 FFFF (USHRT_MAX)

int 4 32 80000000 (INT_MIN) 7FFFFFFF (INT_MAX)
unsigned int 4 32 0 FFFFFFFF (UINT_MAX)

long 8 64
8000000000000000
(LONG_MIN)

7FFFFFFFFFFFFFFF
(LONG_MAX)

unsigned long 8 64 0
FFFFFFFFFFFFFFFF
(ULONG_MAX)

85

Overflow and Underflow

000…000111…111

011…111100…000

000…001
000…010
000…011

111…110
111…101

111…100

100…001
100…010

011…110
011…101

+1

+1

+1

……

86

Overflow

At which points can overflow occur for
signed and unsigned int? (assume binary values
shown are all 32 bits)

A. Signed and unsigned can both overflow
at points X and Y

B. Signed can overflow only at X, unsigned
only at Y

C. Signed can overflow only at Y, unsigned
only at X

D. Signed can overflow at X and Y,
unsigned only at X

E. Other

X

Y

000…000111…111

011…111100…000

000…001
000…010
000…011

111…110
111…101

111…100

100…001
100…010

011…110
011…101

……

87

Unsigned Integers

000…000111…111

011…111100…000

000…001
000…010

000…011

111…110
111…101

111…100

100…001
100…010

011…110
011…101

……

0≈+4billion

Discontinuity
means overflow

possible here

Increasing positive
num

bers

M
or

e
in

cr
ea

si
ng

 p
os

iti
ve

nu
m

be
rs

88

Signed Numbers

000…000111…111

011…111100…000

000…001
000…010

000…011

111…110
111…101

111…100

100…001
100…010

011…110
011…101

……

0-1

Discontinuity
means overflow

possible here

Increasing positive num
bers

N
eg

at
iv

e
nu

m
be

rs
be

co
m

in
g

le
ss

 n
eg

at
iv

e
(i.

e.
 in

cr
ea

si
ng

)

≈+2billion≈-2billion

+1

89

Overflow In Practice: PSY

YouTube: “We never thought a video would be watched in numbers
greater than a 32-bit integer (=2,147,483,647 views), but that was before
we met PSY. "Gangnam Style" has been viewed so many times we had to
upgrade to a 64-bit integer (9,223,372,036,854,775,808)!”

90

Overflow In Practice: Timestamps
• Many systems store timestamps as the number of seconds since Jan. 1, 1970

in a signed 32-bit integer.
• Problem: the latest timestamp that can be represented this way is 3:14:07 UTC

on Jan. 13 2038!

91

Underflow In Practice: Gandhi
• In the game “Civilization”, each

civilization leader had an
“aggression” rating. Gandhi was
meant to be peaceful, and had a
score of 1.
• If you adopted “democracy”, all

players’ aggression reduced by 2.
Gandhi’s went from 1 to 255!
• Gandhi then became a big fan of

nuclear weapons.
https://kotaku.com/why-gandhi-is-such-an-asshole-in-civilization-1653818245

92

printf and Integers
• There are 3 placeholders for 32-bit integers that we can use:
• %d: signed 32-bit int
• %u: unsigned 32-bit int
• %x: hex 32-bit int

• As long as the value is a 32-bit type, printf will treat it according to the
placeholder!

93

Casting
• What happens at the byte level when we cast between variable types? The

bytes remain the same! This means they may be interpreted differently
depending on the type.

int v = -12345;
unsigned int uv = v;
printf("v = %d, uv = %u\n", v, uv);

This prints out: "v = -12345, uv = 4294954951". Why?

94

Casting
• What happens at the byte level when we cast between variable types? The

bytes remain the same! This means they may be interpreted differently
depending on the type.

int v = -12345;
unsigned int uv = v;
printf("v = %d, uv = %u\n", v, uv);

The bit representation for -12345 is 0b11000000111001.
If we treat this binary representation as a positive number, it’s huge!

95

Casting

96

Comparisons Between Different Types
• Be careful when comparing signed and unsigned integers. C will implicitly

cast the signed argument to unsigned, and then performs the operation
assuming both numbers are non-negative.

Expression Type Evaluation
0 == 0U
-1 < 0
-1 < 0U
2147483647 > -2147483647 - 1
2147483647U > -2147483647 - 1
2147483647 > (int)2147483648U
-1 > -2
(unsigned)-1 > -2

97

Comparisons Between Different Types
• Be careful when comparing signed and unsigned integers. C will implicitly

cast the signed argument to unsigned, and then performs the operation
assuming both numbers are non-negative.

Expression Type Evaluation
0 == 0U Unsigned 1
-1 < 0 Signed 1
-1 < 0U Unsigned 0
2147483647 > -2147483647 - 1 Signed 1
2147483647U > -2147483647 - 1 Unsigned 0
2147483647 > (int)2147483648U Signed 1
-1 > -2 Signed 1
(unsigned)-1 > -2 Unsigned 1

98

Comparisons Between Different Types

Which many of the following statements are true? (assume that
variables are set to values that place them in the spots shown)

s3 > u3
u2 > u4
s2 > s4
s1 > s2
u1 > u2
s1 > u3

99

Comparisons Between Different Types

Which many of the following statements are true? (assume that
variables are set to values that place them in the spots shown)

s3 > u3 - true
u2 > u4 - true
s2 > s4 - false
s1 > s2 - true
u1 > u2 - true
s1 > u3 - true

100

Recap
• Bits and Bytes
• Hexadecimal
• Integer Representations
• Unsigned Integers
• Signed Integers
• Break: Announcements
• Casting and Combining Types

Next time: Boolean logic and bit operations

