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CS107, Lecture 2
Bits and Bytes; Integer Representations

reading:
Bryant & O’Hallaron, Ch. 2.2-2.3
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Plan For Today
• Bits and Bytes
• Hexadecimal
• Integer Representations
• Unsigned Integers
• Signed Integers
• Casting and Combining Types
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Demo: Unexpected 
Behavior
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Plan For Today
• Bits and Bytes
• Hexadecimal
• Integer Representations
• Unsigned Integers
• Signed Integers
• Break: Announcements
• Casting and Combining Types
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Bits
• Computers are built around the idea of two states: “on” and “off”.  Transistors 

represent this in hardware, and bits represent this in software!
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One Bit At A Time
• We can combine bits, like with base-10 numbers, to represent more data.  8 

bits = 1 byte.
• Computer memory is just a large array of bytes!  It is byte-addressable; you 

can’t address (store location of) a bit; only a byte.
• Computers still fundamentally operate on bits; we have just gotten more 

creative about how to represent different data as bits!
• Images
• Audio
• Video
• Text
• And more…
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Base 10

5 9 3 4
Digits 0-9 (0 to base-1)
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Base 10

5 9 3 4
onestens

hundreds

thousands
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Base 10

5 9 3 4
onestens

hundreds

thousands

= 5*1000 + 9*100 + 3*10 + 4*1



12

Base 10

5 9 3 4
100101102103
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Base 10

5 9 3 4
012310X:
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Base 2

1 0 1 1
01232X:

Digits 0-1 (0 to base-1)
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Base 2

1 0 1 1
20212223
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Base 2

1 0 1 1
onestwosfourseights

= 1*8 + 0*4 + 1*2 + 1*1 = 1110
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Base 2

1 0 1 1
onestwosfourseights

= 1*8 + 0*4 + 1*2 + 1*1 = 1110

Most significant bit (MSB) Least significant bit (LSB)
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Base 10 to Base 2
Question: What is 6 in base 2?
• Strategy:
• What is the largest power of 2 ≤ 6?
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Base 10 to Base 2

_  _  _  _

Question: What is 6 in base 2?
• Strategy:

• What is the largest power of 2 ≤ 6?  22=4

20212223

10
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Base 10 to Base 2

_  _  _  _

Question: What is 6 in base 2?
• Strategy:

• What is the largest power of 2 ≤ 6?  22=4
• Now, what is the largest power of 2 ≤ 6 – 22?

20212223

10
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Base 10 to Base 2

_  _  _  _

Question: What is 6 in base 2?
• Strategy:

• What is the largest power of 2 ≤ 6?  22=4
• Now, what is the largest power of 2 ≤ 6 – 22?  21=2

20212223

10 1
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Base 10 to Base 2

_  _  _  _

Question: What is 6 in base 2?
• Strategy:

• What is the largest power of 2 ≤ 6?  22=4
• Now, what is the largest power of 2 ≤ 6 – 22?  21=2
• 6 – 22 – 21 = 0!

20212223

10 1
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Base 10 to Base 2

_  _  _  _

Question: What is 6 in base 2?
• Strategy:

• What is the largest power of 2 ≤ 6?  22=4
• Now, what is the largest power of 2 ≤ 6 – 22?  21=2
• 6 – 22 – 21 = 0!

20212223

10 1 0
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Base 10 to Base 2

_  _  _  _

Question: What is 6 in base 2?
• Strategy:

• What is the largest power of 2 ≤ 6?  22=4
• Now, what is the largest power of 2 ≤ 6 – 22?  21=2
• 6 – 22 – 21 = 0!

20212223

10 1 0
= 0*8 + 1*4 + 1*2 + 0*1 = 6
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Practice: Base 2 to Base 10
What is the base-10 representation of 10102?
a) 20
b) 101
c) 10
d) 5
e) Other
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Practice: Base 10 to Base 2
What is the base-2 representation of 14?
a) 11112

b) 11102

c) 10102

d) Other
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Practice: Byte Values
• What is the minimum and maximum base-10 value a single byte (8 bits) can 

store?
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Practice: Byte Values
• What is the minimum and maximum base-10 value a single byte (8 bits) can 

store? minimum = 0 maximum = ?
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Practice: Byte Values
• What is the minimum and maximum base-10 value a single byte (8 bits) can 

store? minimum = 0 maximum = ?

11111111
2x:            7   6    5    4    3    2   1    0 
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Practice: Byte Values
• What is the minimum and maximum base-10 value a single byte (8 bits) can 

store? minimum = 0 maximum = ?

• Strategy 1: 1*27 + 1*26 + 1*25 + 1*24 + 1*23+ 1*22 + 1*21 + 1*20 = 255

11111111
2x:            7   6    5    4    3    2   1    0 
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Practice: Byte Values
• What is the minimum and maximum base-10 value a single byte (8 bits) can 

store? minimum = 0 maximum = 255

• Strategy 1: 1*27 + 1*26 + 1*25 + 1*24 + 1*23+ 1*22 + 1*21 + 1*20 = 255
• Strategy 2: 28 – 1 = 255

11111111
2x:            7   6    5    4    3    2   1    0 
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Multiplying by Base

1453 x 10 = 14530
11012 x 2 = 11010
Key Idea: inserting 0 at the end multiplies by the base!
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Plan For Today
• Bits and Bytes
• Hexadecimal
• Integer Representations
• Unsigned Integers
• Signed Integers
• Break: Announcements
• Casting and Combining Types
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Hexadecimal
• When working with bits, oftentimes we have large numbers with 32 or 64 bits.
• Instead, we’ll represent bits in base-16 instead; this is called hexadecimal.

0110 1010 0011
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Hexadecimal
• When working with bits, oftentimes we have large numbers with 32 or 64 bits.
• Instead, we’ll represent bits in base-16 instead; this is called hexadecimal.

0110 1010 0011
0-150-150-15
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Hexadecimal
• When working with bits, oftentimes we have large numbers with 32 or 64 bits.
• Instead, we’ll represent bits in base-16 instead; this is called hexadecimal.

0-150-150-15

This is a base-16 number!
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Hexadecimal
• Hexadecimal is base-16, so we need digits for 1-15.  How do we do this?

0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f 
10   11    12   13    14   15
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Hexadecimal
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Hexadecimal
• In C, we commonly distinguish hexadecimal numbers by prefixing them with 
0x, and binary numbers by prefixing them with 0b.

• E.g. 0xf5 is 0b11110101

0x f  5
1111 0101
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Practice: Hexadecimal to Binary
What is 0x173A in binary?
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Practice: Hexadecimal to Binary
What is 0x173A in binary?
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Practice: Hexadecimal to Binary
What is 0b1111001010110110110011 in hexadecimal? (Hint: start from the 
right)
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Practice: Hexadecimal to Binary
What is 0b1111001010110110110011 in hexadecimal? (Hint: start from the 
right)
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Plan For Today
• Bits and Bytes
• Hexadecimal
• Integer Representations
• Unsigned Integers
• Signed Integers
• Break: Announcements
• Casting and Combining Types
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Number Representations
• Unsigned Integers: positive and 0 integers. (e.g. 0, 1, 2, … 99999…
• Signed Integers: negative, positive and 0 integers. (e.g. …-2, -1, 0, 1,… 9999…)

• Floating Point Numbers: real numbers. (e,g. 0.1, -12.2, 1.5x1012)
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Number Representations
• Unsigned Integers: positive and 0 integers. (e.g. 0, 1, 2, … 99999…
• Signed Integers: negative, positive and 0 integers. (e.g. …-2, -1, 0, 1,… 9999…)

• Floating Point Numbers: real numbers. (e,g. 0.1, -12.2, 1.5x1012)
Stay tuned until week 5!
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32-Bit and 64-Bit

• In the early 2000’s, most computers were 32-bit.  This means that pointers in 
programs were 32 bits.
• 32-bit pointers could store a memory address from 0 to 232-1, for a total of 232

bytes of addressable memory.  This equals 4 Gigabytes, meaning that 32-bit 
computers could have at most 4GB of memory (RAM)!
• Because of this, computers transitioned to 64-bit. This means that pointers in 

programs were 64 bits.
• 64-bit pointers could store a memory address from 0 to 264-1, for a total of 264

bytes of addressable memory. This equals 16 Exabytes, meaning that 64-bit 
computers could have at most 1024*1024*1024 GB of memory (RAM)!
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Number Representations
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Number Representations

Myth
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Plan For Today
• Bits and Bytes
• Hexadecimal
• Integer Representations
• Unsigned Integers
• Signed Integers
• Break: Announcements
• Casting and Combining Types
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Unsigned Integers
• An unsigned integer is 0 or a positive integer (no negatives).
• We have already discussed converting between decimal and binary, which is a 

nice 1:1 relationship.  Examples:
0b0001 = 1
0b0101 = 5
0b1011 = 11
0b1111 = 15

• The range of an unsigned number is 0 → 2w - 1, where w is the number of bits. 
E.g. a 32-bit integer can represent 0 to 232 – 1 (4,294,967,295).
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Unsigned Integers
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Plan For Today
• Bits and Bytes
• Hexadecimal
• Integer Representations
• Unsigned Integers
• Signed Integers
• Break: Announcements
• Casting and Combining Types
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Signed Integers
• An signed integer is a negative integer, 0, or a positive integer.
• Problem: How can we represent negative and positive numbers in binary?
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Signed Integers
• An signed integer is a negative integer, 0, or a positive integer.
• Problem: How can we represent negative and positive numbers in binary?

Idea: let’s reserve the most 
significant bit to store the sign.
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Sign Magnitude Representation

0110
positive 6

1011
negative 3
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Sign Magnitude Representation

0000
positive 0

1000
negative 0

!
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Sign Magnitude Representation

• We’ve only represented 15 of our 16 available numbers!

1 000 = -0
1 001 = -1
1 010 = -2
1 011 = -3
1 100 = -4
1 101 = -5
1 110 = -6
1 111 = -7

0 000 = 0
0 001 = 1
0 010 = 2
0 011 = 3
0 100 = 4
0 101 = 5
0 110 = 6
0 111 = 7
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Sign Magnitude Representation
• Pro: easy to represent, and easy to convert to/from decimal.
• Con: +-0 is not intuitive
• Con: we lose a bit that could be used to store more numbers
• Con: arithmetic is tricky: we need to find the sign, then maybe subtract 

(borrow and carry, etc.), then maybe change the sign…this might get ugly!
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A Better Idea
• Ideally, binary addition would just work regardless of whether the number is 

positive or negative.

0101
????
0000
+
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A Better Idea
• Ideally, binary addition would just work regardless of whether the number is 

positive or negative.

0101
1011
0000
+
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A Better Idea
• Ideally, binary addition would just work regardless of whether the number is 

positive or negative.

0011
????
0000
+
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A Better Idea
• Ideally, binary addition would just work regardless of whether the number is 

positive or negative.

0011
1101
0000
+
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A Better Idea
• Ideally, binary addition would just work regardless of whether the number is 

positive or negative.

0000
????
0000
+



65

A Better Idea
• Ideally, binary addition would just work regardless of whether the number is 

positive or negative.

0000
0000
0000
+
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A Better Idea
Decimal Positive Negative

0 0000 0000

1 0001 1111

2 0010 1110

3 0011 1101

4 0100 1100

5 0101 1011

6 0110 1010

7 0111 1001

Decimal Positive Negative

8 1000 1000

9 1001 (same as -7!) NA

10 1010 (same as -6!) NA

11 1011 (same as -5!) NA

12 1100 (same as -4!) NA

13 1101 (same as -3!) NA

14 1110 (same as -2!) NA

15 1111 (same as -1!) NA
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There Seems Like a Pattern Here…

0101
1011
0000
+

0011
1101
0000
+

0000
0000
0000
+

• The negative number is the positive number inverted, plus one!
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There Seems Like a Pattern Here…

A binary number plus its inverse is all 1s. Add 1 to this to carry over all 1s and get 0!

0101
1010
1111
+

1111
0001
0000
+
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Another Trick
• To find the negative equivalent of a number, work right-to-left and write down 

all digits through when you reach a 1.  Then, invert the rest of the digits.

100100
??????
000000
+
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Another Trick
• To find the negative equivalent of a number, work right-to-left and write down 

all digits through when you reach a 1.  Then, invert the rest of the digits.

100100
???100
000000
+
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Another Trick
• To find the negative equivalent of a number, work right-to-left and write down 

all digits through when you reach a 1.  Then, invert the rest of the digits.

100100
011100
000000
+



72

Two’s Complement
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Two’s Complement
• In two’s complement, we represent a 

positive number as itself, and its 
negative equivalent as the two’s 
complement of itself.
• The two’s complement of a number is 

the binary digits inverted, plus 1.
• This works to convert from positive to 

negative, and back from negative to 
positive!



74

Two’s Complement
• Con: more difficult to represent, and 

difficult to convert to/from decimal and 
between positive and negative.
• Pro: only 1 representation for 0!
• Pro: all bits are used to represent as 

many numbers as possible
• Pro: it turns out that the most significant 

bit still indicates the sign of a number.
• Pro: arithmetic is easy: we just add!
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Two’s Complement
• Adding two numbers is just…adding!  There is no special case needed for 

negatives.  E.g. what is 2 + -5?

0010
1011
1101
+

2

-5

-3
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Two’s Complement
• Subtracting two numbers is just performing the two’s complement on one of 

them and then adding.  E.g. 4 – 5 = -1.

0100
0101-

4

5
0100
1011
1111
+

4

-5

-1
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Two’s Complement
• Multiplying two numbers is just multiplying, and discarding overflow digits.  

E.g. -2 x -3 = 6.

1110 (-2)
x1101 (-3)

1110
0000

1110
+1110 
10110110    (6)
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Practice: Two’s Complement
What are the negative or positive equivalents of the numbers below?
a) -4 (1100)
b) 7 (0111)
c) 3 (0011)
d) -8 (1000)
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Practice: Two’s Complement
What are the negative or positive equivalents of the numbers below?
a) -4 (1100)
b) 7 (0111)
c) 3 (0011)
d) -8 (1000)
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Plan For Today
• Bits and Bytes
• Hexadecimal
• Integer Representations
• Unsigned Integers
• Signed Integers
• Break: Announcements
• Casting and Combining Types
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Announcements
• Sign up for Piazza on the Help page if you haven’t already!
• Assign0 released earlier this week, due Mon.
• Lab signups opened earlier this week, start next week.
• Please send course staff OAE letters for accommodations!
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Plan For Today
• Bits and Bytes
• Hexadecimal
• Integer Representations
• Unsigned Integers
• Signed Integers
• Break: Announcements
• Casting and Combining Types
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Overflow and Underflow
• If you exceed the maximum value of your bit representation, you wrap around 

or overflow back to the smallest bit representation.

0b1111 + 0b1 = 0b0000

• If you go below the minimum value of your bit representation, you wrap 
around or underflow back to the largest bit representation.

0b0000 - 0b1 = 0b1111
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Min and Max Integer Values
Type Width 

(bytes)

Width 
(bits
)

Min in hex (name) Max in hex (name)

char 1 8 80 (CHAR_MIN) 7F (CHAR_MAX)
unsigned char 1 8 0 FF (UCHAR_MAX)

short 2 16 8000 (SHRT_MIN) 7FFF (SHRT_MAX)
unsigned 
short

2 16 0 FFFF (USHRT_MAX)

int 4 32 80000000 (INT_MIN) 7FFFFFFF (INT_MAX)
unsigned int 4 32 0 FFFFFFFF (UINT_MAX)

long 8 64
8000000000000000 
(LONG_MIN)

7FFFFFFFFFFFFFFF 
(LONG_MAX)

unsigned long 8 64 0
FFFFFFFFFFFFFFFF 
(ULONG_MAX)
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Overflow and Underflow

000…000111…111

011…111100…000

000…001
000…010
000…011

111…110
111…101

111…100

100…001
100…010

011…110
011…101

+1

+1

+1

……



86

Overflow

At which points can overflow occur for 
signed and unsigned int? (assume binary values 
shown are all 32 bits)

A. Signed and unsigned can both overflow 
at points X and Y

B. Signed can overflow only at X, unsigned 
only at Y

C. Signed can overflow only at Y, unsigned 
only at X

D. Signed can overflow at X and Y, 
unsigned only at X

E. Other

X

Y

000…000111…111

011…111100…000

000…001
000…010
000…011

111…110
111…101

111…100

100…001
100…010

011…110
011…101

……
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Unsigned Integers

000…000111…111

011…111100…000

000…001
000…010

000…011

111…110
111…101

111…100

100…001
100…010

011…110
011…101

……

0≈+4billion

Discontinuity 
means overflow 

possible here

Increasing positive
num

bers

M
or

e 
in

cr
ea

si
ng

 p
os

iti
ve

nu
m

be
rs
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Signed Numbers

000…000111…111

011…111100…000

000…001
000…010

000…011

111…110
111…101

111…100

100…001
100…010

011…110
011…101

……

0-1

Discontinuity 
means overflow 

possible here

Increasing positive num
bers

N
eg

at
iv

e 
nu

m
be

rs
be

co
m

in
g 

le
ss

 n
eg

at
iv

e 
(i.

e.
 in

cr
ea

si
ng

)

≈+2billion≈-2billion

+1



89

Overflow In Practice: PSY

YouTube: “We never thought a video would be watched in numbers 
greater than a 32-bit integer (=2,147,483,647 views), but that was before 
we met PSY. "Gangnam Style" has been viewed so many times we had to 
upgrade to a 64-bit integer (9,223,372,036,854,775,808)!”
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Overflow In Practice: Timestamps
• Many systems store timestamps as the number of seconds since Jan. 1, 1970

in a signed 32-bit integer.
• Problem: the latest timestamp that can be represented this way is 3:14:07 UTC 

on Jan. 13 2038!
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Underflow In Practice: Gandhi
• In the game “Civilization”, each 

civilization leader had an 
“aggression” rating.  Gandhi was 
meant to be peaceful, and had a 
score of 1.
• If you adopted “democracy”, all 

players’ aggression reduced by 2.  
Gandhi’s went from 1 to 255!
• Gandhi then became a big fan of 

nuclear weapons.
https://kotaku.com/why-gandhi-is-such-an-asshole-in-civilization-1653818245
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printf and Integers
• There are 3 placeholders for 32-bit integers that we can use:
• %d: signed 32-bit int
• %u: unsigned 32-bit int
• %x: hex 32-bit int

• As long as the value is a 32-bit type, printf will treat it according to the 
placeholder!
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Casting
• What happens at the byte level when we cast between variable types?  The 

bytes remain the same! This means they may be interpreted differently 
depending on the type.

int v = -12345;
unsigned int uv = v;
printf("v = %d, uv = %u\n", v, uv);

This prints out: "v = -12345, uv = 4294954951".  Why?
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Casting
• What happens at the byte level when we cast between variable types?  The 

bytes remain the same! This means they may be interpreted differently 
depending on the type.

int v = -12345;
unsigned int uv = v;
printf("v = %d, uv = %u\n", v, uv);

The bit representation for -12345 is 0b11000000111001.
If we treat this binary representation as a positive number, it’s huge!
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Casting
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Comparisons Between Different Types
• Be careful when comparing signed and unsigned integers.  C will implicitly 

cast the signed argument to unsigned, and then performs the operation 
assuming both numbers are non-negative.

Expression Type Evaluation
0 == 0U
-1 < 0
-1 < 0U
2147483647 > -2147483647 - 1
2147483647U > -2147483647 - 1
2147483647 > (int)2147483648U
-1 > -2
(unsigned)-1 > -2
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Comparisons Between Different Types
• Be careful when comparing signed and unsigned integers.  C will implicitly 

cast the signed argument to unsigned, and then performs the operation 
assuming both numbers are non-negative.

Expression Type Evaluation
0 == 0U Unsigned 1
-1 < 0 Signed 1
-1 < 0U Unsigned 0
2147483647 > -2147483647 - 1 Signed 1
2147483647U > -2147483647 - 1 Unsigned 0
2147483647 > (int)2147483648U Signed 1
-1 > -2 Signed 1
(unsigned)-1 > -2 Unsigned 1
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Comparisons Between Different Types

Which many of the following statements are true? (assume that 
variables are set to values that place them in the spots shown) 

s3 > u3
u2 > u4
s2 > s4
s1 > s2
u1 > u2
s1 > u3 
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Comparisons Between Different Types

Which many of the following statements are true? (assume that 
variables are set to values that place them in the spots shown) 

s3 > u3 - true
u2 > u4 - true
s2 > s4 - false
s1 > s2 - true
u1 > u2 - true
s1 > u3 - true
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Recap
• Bits and Bytes
• Hexadecimal
• Integer Representations
• Unsigned Integers
• Signed Integers
• Break: Announcements
• Casting and Combining Types

Next time: Boolean logic and bit operations


