CS107, Lecture 9

C Generics — Function Pointers

Reading: K&R 5.11

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Marty Stepp, Cynthia Lee, Chris Gregg, and others.

Learning Goals

* Learn how to write C code that works with any data type.
* Learn how to pass functions as parameters

* Learn how to write functions that accept functions as parameters

Plan For Today

e Recap: Generics with Void *
* Finish up: Generic Stack

* Function Pointers

* Example: Bubble Sort

* Example: Stack Cleanup

Plan For Today

e Recap: Generics with Void *

* We always strive to write code that is as general-purpose as possible.

* Generic code reduces code duplication, and means you can make
improvements and fix bugs in one place rather than many.

* Generics is used throughout C for functions to sort any array, search any array,
free arbitrary memory, and more.

Wouldn’t it be nice if we could write one function that would work with any
parameter type, instead of so many different versions?

void swap_int(int *a, int *b) { .. }

void swap float(float *a, float *b) { .. }
void swap size t(size t *a, size t *b) { .. }
void swap _double(double *a, double *b) { .. }

void swap_string(char **a, char **b) { .. }

void swap _mystruct(mystruct *a, mystruct *b) { .. }

Generic Swap

void swap(void *datalptr, void *data2ptr, size t nbytes) {
char temp[nbytes];
// store a copy of datal in temporary storage

memcpy (temp, datalptr, nbytes);
// copy data2 to location of datal

memcpy (datalptr, data2ptr, nbytes);
// copy data in temporary storage to location of data2

memcpy(data2ptr, temp, nbytes);

We can use void * to represent a pointer to any
data, and memcpy to copy arbitrary bytes.

Void * Pitfalls

* void *s are powerful, but dangerous - C cannot do as much checking!

* E.g. with int, C would never let you swap half of an int. With void *s, this can
happen!

int x = Oxftfffffft;
int y = Oxeeeeeecee;
swap(&x, &y, sizeof(short));

// now X = Oxffffeeee, y = Oxeeeeffft!
printf("x = Ox%x, y = Ox%x\n", X, y);

Let’s write a function that swaps the first and last elements in an array. How can

we make this generic?
void swap_ends_int(int *arr, size_t nelems) {

swap(arr, arr + nelems - 1, sizeof(*arr));

¥

void swap_ends_short(short *arr, size t nelems) {
swap(arr, arr + nelems - 1, sizeof(*arr));
}

void swap_ends_string(char **arr, size t nelems) {
swap(arr, arr + nelems - 1, sizeof(*arr));
}

void swap_ends float(float *arr, size t nelems) {
swap(arr, arr + nelems - 1, sizeof(*arr));
}

Pointer Arithmetic

arr + nelems - 1
Let’s say nelems = 4. How many bytes beyond arr is this?

If it’s an array of...

Int: adds 3 places to arr, and 3 * sizeof(int) = 12 bytes

Short: adds 3 places to arr, and 3 * sizeof(short) = 6 bytes
Char *: adds 3 places to arr, and 3 * sizeof(char *) = 24 bytes

In each case, we need to know the element size to do the arithmetic.

10

You’'re asked to write a function that swaps the first and last elements in an
array of numbers. Well, now it can swap an array of anything!

void swap_ends(void *arr, size t nelems, size t elem bytes) {
swap(arr, (char *)arr + (nelems - 1) * elem bytes, elem bytes);
}

11

Plan For Today

* Finish up: Generic Stack

12

* C generics are particularly powerful in helping us create generic data
structures.

* Let’s see how we might go about making a Stack in C.

13

typedef struct int node {
struct int node *next;
int data;

} int node;

typedef struct int stack {
int nelems;
int node *top;

} int stack;

14

 int_stack create(): creates a new stack on the heap and returns a
pointer to it

 int_stack push(int_stack *s, int data): pushes data onto the
stack

* int_stack pop(int_stack *s): pops and returns topmost stack element

15

Int_stack create

int _stack *int stack create() {
int stack *s = malloc(sizeof(int_stack));
s->nelems = 0;
s->top = NULL;
return s;

Why must this be heap-allocated?

16

void int stack push(int stack *s, int data) {
int _node *new _node = malloc(sizeof(int_node));
new node->data = data;

new_node->next = s->top;

s->top = new _node;
S->nelems++;

17

int_stack_pop

int int stack pop(int stack *s) {
if (s->nelems == 0) {
error(1l, @, "Cannot pop from empty stack™);
}

int node *n = s->top;
int value = n->data;

s->top = n->next;

free(n);
s->nelems--;

return value;

What modifications are
necessary to make a
generic stack?

Generic Stack Structs

Each node can no longer store the data itself, because it could be any size!
Instead, it stores a pointer to the data somewhere else.

typedef struct node {
struct node *next;
void *data;

} node;

typedef struct stack {
int nelems;
int elem size bytes;
node *top;
} stack; 2o

Generic stack create

stack *stack create(int elem size bytes) {
stack *s = malloc(sizeof(stack));
s->nelems = 0;
s->top = NULL;
s->elem_size bytes = elem size bytes;
return s;

21

Generic stack_push

void int stack push(int stack *s, int data) {
int _node *new _node = malloc(sizeof(int_node));
new node->data = data;

new node->next = s->top;
s->top = new _node;
s->nelems++;

Problem: we can no longer pass the data itself as
a parameter, because it could be any size! We
also cannot copy the data into the node itself.

22

Generic stack_push

void int stack push(int stack *s, int data) {
int _node *new _node = malloc(sizeof(int_node));
new node->data = data;

new node->next = s->top;
s->top = new _node;
s->nelems++;

Solution: pass a pointer to the data as a

parameter instead, and make a heap-allocated
copy of it that the node points to.

23

Generic stack_push

void stack push(stack *s, const void *data) {
node *new node = malloc(sizeof(node));
new_node->data = malloc(s->elem size bytes);
memcpy(new_node->data, data, s->elem size bytes);

new node->next = s->top;
s->top = new _node;
s->nelems++;

Solution: pass a pointer to the data as a
parameter instead, and make a heap-allocated
copy of it that the node points to.

24

Generic stack_push

void stack push(stack *s, const void *data) {
node *new node = malloc(sizeof(node));
new node->data = data;

new_node->next = s->top;
s->top = new _node;
S->nelems++;

Why can’t we do this?

25

Generic stack_push

void stack push(stack *s, const void *data) {
node *new node = malloc(sizeof(node));
new node->data = data;

new node->next = s->top;
s->top = new _node;
s->nelems++;

Why can’t we do this? Because we don’t know
where data points to. It could point to stack
memory that goes away in the future! This stack
must have its own copy to control its lifetime.

26

Generic stack_pop

int int stack pop(int stack *s) {
if (s->nelems == 0) {
error(1l, @, "Cannot pop from empty stack™);
}

int_node *n = s->top;
int value = n->data;

s->top = n->next;

free(n);
s->nelems--;

Problem: we can no longer return the
return value; data itself, because it could be any size!

Generic stack_pop

int int stack pop(int stack *s) {
if (s->nelems == 0) {
error(1l, @, "Cannot pop from empty stack™);
}

int_node *n = s->top;
int value = n->data;

s->top = n->next;

free(n);

s->nelems--; Solution: have the caller pass a memory

location as a parameter, and copy the data
return value; value to that location.

Generic stack_pop

void stack pop(stack *s, void *addr) {
if (s->nelems == 0) {
error(1l, @, "Cannot pop from empty stack™);
}

node *n = s->top;
memcpy(addr, n->data, s->elem_size_bytes);
s->top = n->next;

free(n->data);

free(n); e —
S'>nelem5"; olution: have the caller passa memory

} location as a parameter, and copy the data
value to that location.

29

Using Generic Stack

int_stack *intstack = int_stack_create();

for (int i = @; i < TEST_STACK _SIZE; i++) {
int _stack push(intstack, i);

¥

We must now pass the address of an element to push
onto the stack, rather than the element itself.

30

Using Generic Stack

stack *intstack = stack create(sizeof(int));

for (int i = @; i < TEST_STACK _SIZE; i++) {
stack push(intstack, &i);

}

We must now pass the address of an element to push
onto the stack, rather than the element itself.

31

Using Generic Stack

int_stack *intstack = int_stack_create();
int _stack push(intstack, 7);

We must now pass the address of an element to push
onto the stack, rather than the element itself.

32

Using Generic Stack

stack *intstack = stack create(sizeof(int));
int num = 7;
stack _push(intstack, &num);

We must now pass the address of an element to push
onto the stack, rather than the element itself.

33

Using Generic Stack

// Pop off all elements

while (intstack->nelems > 0) {
printf("%d\n", int stack pop(intstack));

}

We must now pass the address of where we would
like to store the popped element, rather than getting
it directly as a return value.

34

Using Generic Stack

// Pop off all elements

int popped int;

while (intstack->nelems > @) {
int_stack pop(intstack, &popped int);
printf("%d\n", popped int);

We must now pass the address of where we would
like to store the popped element, rather than getting
it directly as a return value.

35

Plan For Today

 Function Pointers

36

Bubble Sort

* Let’s write a function to sort a list of integers. We'll use the bubble sort
algorithm.

4 2 12 | -5 | 56 | 14

* Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

37

Bubble Sort

* Let’s write a function to sort a list of integers. We'll use the bubble sort
algorithm.

!

* Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

38

Bubble Sort

* Let’s write a function to sort a list of integers. We'll use the bubble sort
algorithm.

!

* Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

39

Bubble Sort

* Let’s write a function to sort a list of integers. We'll use the bubble sort

algorithm.

* Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

40

Bubble Sort

* Let’s write a function to sort a list of integers. We'll use the bubble sort

algorithm.

* Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

41

Bubble Sort

* Let’s write a function to sort a list of integers. We'll use the bubble sort

algorithm.

* Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

42

Bubble Sort

* Let’s write a function to sort a list of integers. We'll use the bubble sort

algorithm.

* Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

43

Bubble Sort

* Let’s write a function to sort a list of integers. We'll use the bubble sort

algorithm.

* Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

44

Bubble Sort

* Let’s write a function to sort a list of integers. We'll use the bubble sort

algorithm.

* Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

45

Bubble Sort

* Let’s write a function to sort a list of integers. We'll use the bubble sort
algorithm.

!

* Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

46

Bubble Sort

* Let’s write a function to sort a list of integers. We'll use the bubble sort

algorithm.

* Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

47

Bubble Sort

* Let’s write a function to sort a list of integers. We'll use the bubble sort

algorithm.

* Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

48

Bubble Sort

* Let’s write a function to sort a list of integers. We'll use the bubble sort

algorithm.

* Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

49

Bubble Sort

* Let’s write a function to sort a list of integers. We'll use the bubble sort

algorithm.

* Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

50

Bubble Sort

* Let’s write a function to sort a list of integers. We'll use the bubble sort

algorithm.

* Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

51

Bubble Sort

* Let’s write a function to sort a list of integers. We'll use the bubble sort
algorithm.

!

* Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

52

Bubble Sort

* Let’s write a function to sort a list of integers. We'll use the bubble sort
algorithm.

!

* Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

53

Bubble Sort

* Let’s write a function to sort a list of integers. We'll use the bubble sort

algorithm.

* Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

54

Bubble Sort

* Let’s write a function to sort a list of integers. We'll use the bubble sort

algorithm.

* Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

55

Bubble Sort

* Let’s write a function to sort a list of integers. We'll use the bubble sort

algorithm.

* Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

56

Bubble Sort

* Let’s write a function to sort a list of integers. We'll use the bubble sort

algorithm.

* Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

57

Bubble Sort

* Let’s write a function to sort a list of integers. We'll use the bubble sort
algorithm.

!

* Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

58

Bubble Sort

* Let’s write a function to sort a list of integers. We'll use the bubble sort

algorithm.

* Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

59

Bubble Sort

* Let’s write a function to sort a list of integers. We'll use the bubble sort

algorithm.

* Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

60

Bubble Sort

* Let’s write a function to sort a list of integers. We'll use the bubble sort

algorithm.

* Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

61

Bubble Sort

* Let’s write a function to sort a list of integers. We'll use the bubble sort
algorithm.

-5 2 4 12 | 14 | 56

* Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

62

Integer Bubble Sort

void bubble sort int(int *arr, int n) {
while (true) {
bool swapped = false;
for (int i = 1; 1 < n; i++) {
if (arr[i-1] > arr[i]) {
swapped = true;
swap_int(&arr[i-1], &arr[i]);

}
}
if (!swapped) {
return;
! } How can we make this function

} generic, to sort an array of any type?

63

Integer Bubble Sort

void bubble sort int(int *arr, int n) {
while (true) {
bool swapped = false;
for (int i = 1; 1 < n; i++) {

¥

if (arr[i-1] > arr[i]) {
swapped = true;

swap_int(&arr[i-1], &arr[i]);

if (!swapped) {

¥

return;

Let’s start by making the parameters
and swap generic.

64

Generic Bubble Sort

void bubble sort int(void *arr, int n, int elem _size bytes) {
while (true) {
bool swapped = false;
for (int i = 1; 1 < n; i++) {

¥

if (arr[i-1] > arr[i]) {
swapped = true;

swap_int(&arr[i-1], &arr[i]);

if (!swapped) {

¥

return;

Let’s start by making the parameters
and swap generic.

65

Generic Bubble Sort

void bubble sort int(void *arr, int n, int elem size bytes) {
while (true) {
bool swapped = false;
for (int i = 1; 1 < n; i++) {

¥

if (arr[i-1] > arr[i]) {
swapped = true;

swap(&arr[i-1], &arr[i], elem _size bytes);

if (!swapped) {

¥

return;

Let’s start by making the parameters
and swap generic.

66

Generic Bubble Sort

void bubble sort int(void *arr, int n, int elem size bytes) {

while (true) {
bool swapped = false;
for (int i = 1; 1 < n; i++) {
void *prev_elem = (char *)arr + (i-1)*elem _size bytes;
void *curr_elem = (char *)arr + i*elem_size bytes;
if (arr[i-1] > arr[i]) {

swapped = true;
swap(&arr[i-1], &arr[i], elem size bytes);

}
}
i l
1f %Z‘gﬂﬁﬁfd) { Let’s start by making the parameters
} and swap generic.
}
67

Generic Bubble Sort

void bubble sort int(void *arr, int n, int elem size bytes) {

while (true) {
bool swapped = false;
for (int i = 1; 1 < n; i++) {
void *prev_elem = (char *)arr + (i-1)*elem size bytes;
void *curr_elem = (char *)arr + i*elem size bytes;
if (*prev_elem > *curr_elem) {

swapped = true;
swap(prev_elem, curr_elem, elem_size bytes);

}
}
i l
1f %Z‘gﬂﬁﬁfd) { Let’s start by making the parameters
} and swap generic.
}
68

Generic Bubble Sort

void bubble sort int(void *arr, int n, int elem _size bytes) {

while (true) {
bool swapped = false;
for (int 1 = 1; 1 < n; i++) {
void *prev_elem = (char *)arr + (i-1)*elem size bytes;
void *curr_elem = (char *)arr + i*elem size bytes;
if (*prev_elem > *curr_elem) {

swapped = true;
swap(prev_elem, curr_elem, elem_size_ bytes);

}
}
if (!swapped) {
return;
}
}

Generic Bubble Sort

void bubble sort int(void *arr, int n, int elem _size bytes) {

while (true) {
bool swapped = false;
for (int i = 1; 1 < n; i++) {
void *prev_elem = (char *)arr + (i-1)*elem size bytes;
void *curr_elem (char *)arr + i*elem size bytes;
if (*prev_elem > *curr_elem) {

swapped = true;
swap(prev_elem, curr_elem, elem_size_ bytes);

}
}
if (lswapped) { Wait a minute...this doesn’t work! We can’t
return; dereference void *s OR compare any element
) h with >, since they may not be numbers! (A,}
V¢
o 70

A Generics Conundrum

* We’ve hit a wall — there is no way to generically compare elements. They
could be any type, and have complex ways to compare them.

* How can we write code to compare any two elements of the same type?

* That’s not something that bubble sort can ever know how to do. BUT — our
caller should know how to do this, because they’re passing in the data....let’s
ask them!

/1

Generic Bubble Sort

void bubble sort int(void *arr, int n, int elem _size bytes) {
while (true) {
bool swapped = false;
for (int i = 1; 1 < n; i++) {
void *prev_elem = (char *)arr + (i-1)*elem size bytes;
void *curr_elem (char *)arr + i*elem size bytes;
if (*prev_elem > *curr_elem) {
swapped = true;
swap(prev_elem, curr_elem, elem size bytes);

}
} P N
if (Iswapped) { Us: hey, you, person who
return; called us. Do you know how
} to compare these two
} elements? Can you help us?

} ~ e

Generic Bubble Sort

void bubble sort int(void *arr, int n, int elem _size bytes) {

while (true) {
bool swapped = false;
for (int i = 1; 1 < n; i++) {
void *prev_elem = (char *)arr + (i-1)*elem size bytes;
void *curr_elem (char *)arr + i*elem size bytes;
if (*prev_elem > *curr_elem) {

swapped = true;
swap(prev_elem, curr_elem, elem_size_ bytes);

}

}

if (!swapped) { /Caller: yeah, | know how to A
return; compare those. | have a function

} that can do the comparison for you

\ } _and tell you the resultﬁ
73

Generic Bubble Sort

void bubble sort int(void *arr, int n, int elem _size bytes) {

while (true) {
bool swapped = false;
for (int i = 1; 1 < n; i++) {
void *prev_elem = (char *)arr + (i-1)*elem size bytes;
void *curr_elem = (char *)arr + i*elem size bytes;
if (compare_fn(prev_elem, curr_elem)) {

swapped = true;
swap(prev_elem, curr_elem, elem_size_ bytes);

}
}
?
i (1swapped) { How can we c?mpare.these elements? They
return; can pass us this function as a parameter.
} This function’s job is to tell us how to
} compare two elements of this type.
74

Generic Bubble Sort

void bubble sort int(void *arr, int n, int elem _size bytes,
bool (*compare fn)(void *a, void *b)) {
while (true) {

bool swapped = false;

for (int i = 1; 1 < n; i++) {
void *prev_elem = (char *)arr + (i-1)*elem size bytes;
void *curr_elem = (char *)arr + i*elem size bytes;
if (compare_fn(prev_elem, curr_elem)) {

swapped = true;
swap(prev_elem, curr_elem, elem_size bytes);

}
} How can we compare these elements? They
if (!swapped) { can pass us this function as a parameter.
return; This function’s job is to tell us how to
) } compare two elements of this type.)

Function Pointers

A function pointer is the variable type for passing a function as a parameter.
Here is how the parameter’s type is declared.

bool (*compare fn)(void *a, void *b)

76

Function Pointers

A function pointer is the variable type for passing a function as a parameter.
Here is how the parameter’s type is declared.

bool (*compare fn)(void *a, void *b)

|

Return type
(bool)

77

Function Pointers

A function pointer is the variable type for passing a function as a parameter.
Here is how the parameter’s type is declared.

bool (*compare fn)(void *a, void *b)

|

Function pointer name
(compare_fn)

78

Function Pointers

A function pointer is the variable type for passing a function as a parameter.
Here is how the parameter’s type is declared.

bool (*compare fn)(void *a, void *b)

I

Function parameters
(two void *s)

79

Generic Bubble Sort

void bubble sort int(void *arr, int n, int elem _size bytes,
bool (*compare_fn)(void *a, void *b)) {
while (true) {
bool swapped = false;
for (int 1 = 1; 1 < n; i++) {
void *prev_elem = (char *)arr + (i-1)*elem size bytes;
void *curr_elem = (char *)arr + i*elem size bytes;
if (compare_fn(prev_elem, curr_elem)) {
swapped = true;
swap(prev_elem, curr_elem, elem size bytes);

}

}

if (!swapped) {
return;

}

Function Pointers

bool integer compare(void *ptrl, void *ptr2) {

/] 22?2
}

int main(int argc, char *argv[]) {
int nums[] = {4, 2, -5, 1, 12, 56};
int nums_count = sizeof(nums) / sizeof(nums[@]);

bubble sort(nums, nums_count, sizeof(nums[@]), integer_compare);
return 0;

81

Function Pointers

* Function pointers must always take pointers to the data they care about, since
the data could be any size!

When writing a callback, use the following pattern:
1) Cast the void *argument(s) and set typed pointers equal to them.

2) Dereference the typed pointer(s) to access the values.
3) Perform the necessary operation.

(steps 1 and 2 can often be combined into a single step)

82

Function Pointers

bool integer compare(void *ptrl, void *ptr2) {
// cast arguments to int *s
int *numlptr = (int *)ptril;
int *num2ptr = (int *)ptr2;

// dereference typed points to access values
int numl = *numlptr;
int num2 = *num2ptr;

// perform operation
return numl > num2;

83

Function Pointers

bool integer compare(void *ptrl, void *ptr2) {
// cast arguments to int *s and dereference
int numl = *(int *)ptril;
int num2 = *(int *)ptr2;

// perform operation
return numl > num2;

84

Comparison Functions

* Function pointers are used often in cases like this to compare two values of the
same type.

* The standard comparison function in many C functions provides even more
information. It should return:

e <Qif first value should come before second value
e > (Qif first value should come after second value
* O if first value and second value are equivalent

* This is the same return value format as stremp!

int (*compare_fn)(void *a, void *b)

85

Function Pointers

int integer compare(void *ptrl, void *ptr2) {
// cast arguments to int *s and dereference
int numl = *(int *)ptril;
int num2 = *(int *)ptr2;

// perform operation
return numl - num2;

86

Generic Bubble Sort

void bubble sort int(void *arr, int n, int elem _size bytes,
int (*compare_fn)(void *a, void *b)) {
while (true) {
bool swapped = false;
for (int 1 = 1; 1 < n; i++) {
void *prev_elem = (char *)arr + (i-1)*elem size bytes;
void *curr_elem = (char *)arr + i*elem size bytes;
if (compare_fn(prev_elem, curr_elem) > 0) {
swapped = true;
swap(prev_elem, curr_elem, elem size bytes);

}
}
if (!swapped) {
return;
}
} 87

Comparison Functions

* Exercise: how can we write a comparison function for bubble sort to sort
strings in alphabetical order?

* The common prototype provides even more information. It should return:
e <0 if first value should come before second value
e >0 if first value should come after second value
* O if first value and second value are equivalent

int (*compare_fn)(void *a, void *b)

88

String Comparison Function

int string compare(void *ptrl, void *ptr2) {
// cast arguments and dereference
char *strl = *(char **)ptri;
char *str2 = *(char **)ptr2;

// perform operation
return strcmp(strl, str2);

89

Function Pointer Pitfalls

* If a function takes a function pointer as a parameter, it will accept it as long as
it fits the specified signature.

 This is dangerous! E.g. what happens if you pass in a string comparison
function when sorting an integer array?

90

Plan For Today

* Example: Stack Cleanup

91

Function Pointers

* Function pointers can be used in a variety of ways. For instance, you could
have:
* A function to compare two elements of a given type
e A function to print out an element of a given type
* A function to free memory associated with a given type
 And more...

92

Function Pointers

* Function pointers can be used in a variety of ways. For instance, you could
have:
* A function to compare two elements of a given type
e A function to print out an element of a given type
* A function to free memory associated with a given type
 And more...

93

Demo: Revisiting Our
Generic Stack

Common Utility Callback Functions

* Comparison function — compares two elements of a given type.

int (*cmp_fn)(const void *addrl, const void *addr2)

e Cleanup function — cleans up heap memory associated with a given type.

void (*cleanup fn)(void *addr)

* There are many more! You can specify any functions you would like passed in
when writing your own generic functions.

95

Generics Overview

* We use void * pointers and memory operations like memcpy and memmove
to make data operations generic.

* We use function pointers to make logic/functionality operations generic.

96

Plan For Today

e Recap: Generics with Void *
* Finish up: Generic Stack

* Function Pointers

* Example: Bubble Sort

* Example: Stack Cleanup

Next time: Floats in C

97

