CS107, Lecture 10
Floating Point

Reading: B&O 2.4
CS107 Topic 5: How can a computer represent real numbers in addition to integer numbers?
Learning Goals

Understand the design and compromises of the floating point representation, including:

• Fixed point vs. floating point
• How a floating point number is represented in binary
• Issues with floating point imprecision
• Other potential pitfalls using floating point numbers in programs
Plan For Today

- **Recap:** Generics with Function Pointers
- Representing real numbers
- Fixed Point
- **Break:** Announcements
- Floating Point
- Floating Point Arithmetic
Plan For Today

• Recap: Generics with Function Pointers
• Representing real numbers
• Fixed Point
• Break: Announcements
• Floating Point
• Floating Point Arithmetic
Function Pointers

• In C, there is a variable type for functions!
• We can pass functions as parameters, store functions in variables, etc.
• Why is this useful?
Sometimes, there is functionality that cannot be made generic.

```c
void bubble_sort(void *arr, int n, int elem_size_bytes) {
    while (true) {
        bool swapped = false;
        for (int i = 1; i < n; i++) {
            void *prev_elem = (char *)arr + (i-1)*elem_size_bytes;
            void *curr_elem = (char *)arr + i*elem_size_bytes;
            if (curr_elem should come before prev_elem) {
                swapped = true;
                swap(prev_elem, curr_elem, elem_size_bytes);
            }
        }

        if (!swapped) {
            return;
        }
    }
}
```
Sometimes, there is functionality that *cannot* be made generic. The caller can pass in a function to perform that functionality for the data they are providing.

```c
void bubble_sort(void *arr, int n, int elem_size_bytes,
    bool (*cmp_fn)(const void *, const void *)) {
    while (true) {
        bool swapped = false;
        for (int i = 1; i < n; i++) {
            void *prevElem = (char *)arr + (i-1)*elem_size_bytes;
            void *currElem = (char *)arr + i*elem_size_bytes;
            if (cmp_fn(prevElem, currElem) > 0)) {
                swapped = true;
                swap(prevElem, currElem, elem_size_bytes);
            }
        }
    }
    if (!swapped) {
        return;
    }
}
```
Generic C Standard Library Functions

• **qsort** – I can sort an array of any type! To do that, I need you to provide me a function that can compare two elements of the kind you are asking me to sort.

• **bsearch** – I can use binary search to search for a key in an array of any type! To do that, I need you to provide me a function that can compare two elements of the kind you are asking me to search.

• **lfind** – I can use linear search to search for a key in an array of any type! To do that, I need you to provide me a function that can compare two elements of the kind you are asking me to search.

• **lsearch** - I can use linear search to search for a key in an array of any type! I will also add the key for you if I can’t find it. In order to do that, I need you to provide me a function that can compare two elements of the kind you are asking me to search.
• **scandir** – I can create a directory listing with any order and contents! To do that, I need you to provide me a function that tells me whether or not you want me to include a given directory entry in the listing. I also need you to provide me a function that tells me the correct ordering of two given directory entries.
Function Pointers

Here’s the variable type syntax for a function:

\[
\text{[return type]} (\ast \text{[name]})(\text{[parameters]})
\]
int do_something(char *str) {
 ...
}

int main(int argc, char *argv[]) {
 ...
 int (*func_var)(char *) = do_something;
 ...
 func_var("testing");
 return 0;
}
void bubble_sort(void *arr, int n, int elem_size_bytes,
 int (*cmp_fn)(const void *, const void *)) {

 ...
}

int cmp_double(const void *, const void *) {...}

int main(int argc, char *argv[]) {

 ...
 double values[] = {1.2, 3.5, 12.2};
 int n = sizeof(values) / sizeof(values[0]);
 bubble_sort(values, n, sizeof(*values), cmp_double);
 ...
}
Comparison Functions

• Comparison functions are a common use of function parameters, because many generic functions must know how to compare elements of your type.

• Comparison functions always take *pointers to the data they care about*, since the data could be any size!

When writing a comparison function callback, use the following pattern:
1) Cast the void *argument(s) and set typed pointers equal to them.
2) Dereference the typed pointer(s) to access the values.
3) Perform the necessary operation.

(steps 1 and 2 can often be combined into a single step)
Comparison Functions

• It should return:
 • < 0 if first value should come before second value
 • > 0 if first value should come after second value
 • 0 if first value and second value are equivalent

• This is the same return value format as `strcmp`!

```c
int (*compare_fn)(const void *a, const void *b)
```
int integer_compare(void *ptr1, void *ptr2) {
 // cast arguments to int *s and dereference
 int num1 = *(int *)ptr1;
 int num2 = *(int *)ptr2;

 // perform operation
 return num1 - num2;
}

... qsort(mynums, count, sizeof(*mynums), integer_compare);
int string_compare(void *ptr1, void *ptr2) {
 // cast arguments and dereference
 char *str1 = *(char **)ptr1;
 char *str2 = *(char **)ptr2;

 // perform operation
 return strcmp(str1, str2);
}

qsort(mystrs, count, sizeof(*mystrs), string_compare);
Generics Wrap-Up

• We use **void** * pointers and memory operations like **memcpy** and **memmove** to make data operations generic.

• We use **function pointers** to make logic/functionality operations operations generic.
memset

memset is a function that sets a specified amount of bytes at one address to a certain value.

```c
void *memset(void *s, int c, size_t n);
```

It fills \(n \) bytes starting at memory location \(s \) with the byte \(c \). (It also returns \(s \)).

```c
int counts[5];
memset(counts, 0, 3);  // zero out first 3 bytes at counts
memset(counts + 3, 0xff, 4)  // set 3rd entry’s bytes to 1s
```
Plan For Today

• Recap: Generics with Function Pointers
• Representing real numbers
• Fixed Point
• Break: Announcements
• Floating Point
• Floating Point Arithmetic
We previously discussed representing integer numbers using two’s complement.

However, this system does not represent real numbers such as 3/5 or 0.25.

How can we design a representation for real numbers?
Real Numbers

Problem: unlike with the integer number line, where there are a finite number of values between two numbers, there are an *infinite* number of real number values between two numbers!

Integers between 0 and 2: 1

Real Numbers Between 0 and 2: 0.1, 0.01, 0.001, 0.0001, 0.00001,...

We need a fixed-width representation for real numbers. Therefore, by definition, *we will not be able to represent all numbers.*
Problem: every number base has un-representable real numbers.

Base 10: $\frac{1}{6_{10}} = 0.16666666……_{10}$

Base 2: $\frac{1}{10_{10}} = 0.000110011001100110011…_{2}$

Therefore, by representing in base 2, *we will not be able to represent all numbers*, even those we can exactly represent in base 10.
Fixed Point

• **Idea:** Like in base 10, let’s add binary decimal places to our existing number representation.

\[
\begin{array}{cccccc}
5 & 9 & 3 & 4 & . & 2 & 1 & 6 \\
10^3 & 10^2 & 10^1 & 10^0 & 10^{-1} & 10^{-2} & 10^{-3}
\end{array}
\]

\[
\begin{array}{cccccc}
1 & 0 & 1 & 1 & . & 0 & 1 & 1 \\
2^3 & 2^2 & 2^1 & 2^0 & 2^{-1} & 2^{-2} & 2^{-3}
\end{array}
\]
Plan For Today

• **Recap**: Generics with Function Pointers
• Representing real numbers
• **Fixed Point**
• **Break**: Announcements
• Floating Point
• Floating Point Arithmetic
Fixed Point

- **Idea:** Like in base 10, let’s add binary decimal places to our existing number representation.

- **Pros:** arithmetic is easy! And we know exactly how much precision we have.
• **Problem:** we have to fix where the decimal point is in our representation. What should we pick? This also fixes us to 1 place per bit.

\[
\begin{array}{ccccccc}
\text{0} & 1 & 1 & 1 & 0 & 0 & 1 & 1 \\
\hline
1/2s & 1/4s & 1/8s & \ldots \\
\end{array}
\]

\[
\begin{array}{ccccccc}
1 & 0 & 1 & 1 & 1 & 0 & . & 1 & 1 \\
\hline
16s & 8s & 4s & 2s & 1s & 1/2s & 1/4s \\
\end{array}
\]
Problem: we have to fix where the decimal point is in our representation. What should we pick? This also fixes us to 1 place per bit.

\[
\begin{align*}
. & 0 1 1 0 0 1 1 \\
1/2s & 1/4s 1/8s \ldots \\
101110 . & 11 \\
16s & 8s 4s 2s 1s 1/2s 1/4s
\end{align*}
\]
• **Problem:** we have to fix where the decimal point is in our representation. What should we pick? This also fixes us to 1 place per bit.

To be able to store both these numbers using the same fixed point representation, the bitwidth of the type would need to be at least 207 bits wide!

Base 10

\[5.07 \times 10^{30} = 0.1 \]

Base 2

\[9.86 \times 10^{-32} = 0.01 \]
Let’s Get Real

What would be nice to have in a real number representation?

• Represent widest range of numbers possible
• Flexible “floating” decimal point
• Represent scientific notation numbers, e.g. 1.2 x 10^6
• Still be able to compare quickly
• Have more predictable over/under-flow behavior
Plan For Today

- **Recap:** Generics with Function Pointers
- Representing real numbers
- Fixed Point
- **Break:** Announcements
- Floating Point
- Floating Point Arithmetic
Midterm Exam

• The midterm exam is Fri. 5/10 12:30-2:20PM in Nvidia Aud. and 420-041
 • Last names A-R: Nvidia Auditorium
 • Last Names S-Z: 420-041

• Covers material through lab4/assign4 (no floats or assembly language)

• Closed-book, 1 2-sided page of notes permitted, C reference sheet provided

• Administered via BlueBook software (on your laptop)

• Practice materials and BlueBook download available on course website

• If you have academic (e.g. OAE) or athletics accommodations, please let us know by Sunday 5/5 if possible.

• If you do not have a workable laptop for the exam, you **must** let us know by **Sunday 5/5**. Limited charging outlets will be available for those who need them.
Plan For Today

• Recap: Generics with Function Pointers
• Representing real numbers
• Fixed Point
• Break: Announcements
• Floating Point
• Floating Point Arithmetic
Let’s Get Real

What would be nice to have in a real number representation?

• Represent widest range of numbers possible
• Flexible “floating” decimal point
• Represent scientific notation numbers, e.g. 1.2×10^6
• Still be able to compare quickly
• Have more predictable over/under-flow behavior
Let’s aim to represent numbers of the following scientific-notation-like format:

\[x \times 2^y \]

With this format, 32-bit floats represent numbers in the range \(\sim 1.2 \times 10^{-38} \) to \(\sim 3.4 \times 10^{38} \). Is every number between those representable? No.
IEEE Single Precision Floating Point

\[x \times 2^y \]

Sign bit (0 = positive)

31 30 | 23 22 | 0

s exponent (8 bits) fraction (23 bits)
Exponent

s

exponent (8 bits)

fraction (23 bits)

<table>
<thead>
<tr>
<th>Exponent (Binary)</th>
<th>Exponent (Base 10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11111111</td>
<td>?</td>
</tr>
<tr>
<td>11111110</td>
<td>?</td>
</tr>
<tr>
<td>11111101</td>
<td>?</td>
</tr>
<tr>
<td>11111100</td>
<td>?</td>
</tr>
<tr>
<td>...</td>
<td>?</td>
</tr>
<tr>
<td>00000011</td>
<td>?</td>
</tr>
<tr>
<td>00000010</td>
<td>?</td>
</tr>
<tr>
<td>00000001</td>
<td>?</td>
</tr>
<tr>
<td>00000000</td>
<td>?</td>
</tr>
</tbody>
</table>
Exponent

The exponent in a floating-point number can be represented in both binary and base 10 forms. The exponent field consists of 8 bits, and the fraction field consists of 23 bits.

<table>
<thead>
<tr>
<th>Exponent (Binary)</th>
<th>Exponent (Base 10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>111111111</td>
<td>RESERVED</td>
</tr>
<tr>
<td>111111110</td>
<td>?</td>
</tr>
<tr>
<td>11111101</td>
<td>?</td>
</tr>
<tr>
<td>11111100</td>
<td>?</td>
</tr>
<tr>
<td>...</td>
<td>?</td>
</tr>
<tr>
<td>00000011</td>
<td>?</td>
</tr>
<tr>
<td>00000010</td>
<td>?</td>
</tr>
<tr>
<td>00000001</td>
<td>?</td>
</tr>
<tr>
<td>00000000</td>
<td>RESERVED</td>
</tr>
</tbody>
</table>
Exponent

Exponent (Binary)

<table>
<thead>
<tr>
<th>Exponent (Binary)</th>
<th>Exponent (Base 10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11111111</td>
<td>RESERVED</td>
</tr>
<tr>
<td>11111110</td>
<td>127</td>
</tr>
<tr>
<td>11111101</td>
<td>126</td>
</tr>
<tr>
<td>11111100</td>
<td>125</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>00000011</td>
<td>-124</td>
</tr>
<tr>
<td>00000010</td>
<td>-125</td>
</tr>
<tr>
<td>00000001</td>
<td>-126</td>
</tr>
<tr>
<td>00000000</td>
<td>RESERVED</td>
</tr>
</tbody>
</table>

Fraction (23 bits)
The exponent is **not** represented in two’s complement.

Instead, exponents are sequentially represented starting from 000...1 (most negative) to 111...10 (most positive). This makes bit-level comparison fast.

Actual value = binary value – 127 ("bias")

<table>
<thead>
<tr>
<th>Exponent</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>11111110</td>
<td>254 – 127 = 127</td>
</tr>
<tr>
<td>11111101</td>
<td>253 – 127 = 126</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>00000010</td>
<td>2 – 127 = -125</td>
</tr>
<tr>
<td>00000001</td>
<td>1 – 127 = -126</td>
</tr>
</tbody>
</table>
We could just encode whatever x is in the fraction field. But there’s a trick we can use to make the most out of the bits we have.
An Interesting Observation

In Base 10:

\[42.4 \times 10^5 = 4.24 \times 10^6 \]
\[324.5 \times 10^5 = 3.245 \times 10^7 \]
\[0.624 \times 10^5 = 6.24 \times 10^4 \]

In Base 2:

\[10.1 \times 2^5 = 1.01 \times 2^6 \]
\[1011.1 \times 2^5 = 1.0111 \times 2^8 \]
\[0.110 \times 2^5 = 1.10 \times 2^4 \]

We tend to adjust the exponent until we get down to one place to the left of the decimal point.

Observation: In base 2, this means there is always a 1 to the left of the decimal point!
• We can adjust this value to fit the format described previously. Then, x will always be in the format $1.\text{XXXXXXXXX}$...

• Therefore, in the fraction portion, we can encode just what is *to the right* of the decimal point! This means we get one more digit for precision.

Value encoded = 1._[FRACTION BINARY DIGITS]_
Is this number:
A) Greater than 0?
B) Less than 0?

Is this number:
A) Less than -1?
B) Between -1 and 1?
C) Greater than 1?
We said that it’s not possible to represent \textit{all} real numbers using a fixed-width representation. What does this look like?

\textbf{Float Converter}
- https://www.h-schmidt.net/FloatConverter/IEEE754.html

\textbf{Floats and Graphics}
- https://www.shadertoy.com/view/4tVyDK
Let’s Get Real

What would be nice to have in a real number representation?

• Represent widest range of numbers possible
• Flexible “floating” decimal point
• Represent scientific notation numbers, e.g. 1.2 x 10^6
• Still be able to compare quickly
• Have more predictable over/under-flow behavior
The float representation of zero is all zeros (with any value for the sign bit)

<table>
<thead>
<tr>
<th>Sign</th>
<th>Exponent</th>
<th>Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>any</td>
<td>All zeros</td>
<td>All zeros</td>
</tr>
</tbody>
</table>

• This means there are two representations for zero! 😞
If the exponent is all zeros, we switch into “denormalized” mode.

<table>
<thead>
<tr>
<th>Sign</th>
<th>Exponent</th>
<th>Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>any</td>
<td>All zeros</td>
<td>Any</td>
</tr>
</tbody>
</table>

- We now treat the exponent as -126, and the fraction as *without* the leading 1.
- This allows us to represent the smallest numbers as precisely as possible.
If the exponent is all ones, and the fraction is all zeros, we have +/- infinity.

<table>
<thead>
<tr>
<th>Sign</th>
<th>Exponent</th>
<th>Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>any</td>
<td>All ones</td>
<td>All zeros</td>
</tr>
</tbody>
</table>

- The sign bit indicates whether it is positive or negative infinity.
- Floats have built-in handling of over/underflow!
 - Infinity + anything = infinity
 - Negative infinity + negative anything = negative infinity
 - Etc.
Representing Exceptional Values

If the exponent is all ones, and the fraction is nonzero, we have **Not a Number**.

<table>
<thead>
<tr>
<th>Sign</th>
<th>Exponent</th>
<th>Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>any</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Any nonzero</td>
</tr>
</tbody>
</table>

• NaN results from computations that produce an invalid mathematical result.
 • Sqrt(negative)
 • Infinity / infinity
 • Infinity + -infinity
 • Etc.
Number Ranges

• 32-bit integer (type `int`):
 › -2,147,483,648 to 2,147,483,647
 › Every integer in that range can be represented

• 64-bit integer (type `long`):
 › -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

• 32-bit floating point (type `float`):
 • ~1.2 x10^{-38} to ~3.4 x10^{38}
 • Not all numbers in the range can be represented (not even all integers in the range can be represented!)
 • Gaps can get quite large! (larger the exponent, larger the gap between successive fraction values)

• 64-bit floating point (type `double`):
 • ~2.2 x10^{-308} to ~1.8 x10^{308}
Plan For Today

- **Recap:** Generics with Function Pointers
- Representing real numbers
- Fixed Point
- **Break:** Announcements
- Floating Point
- **Floating Point Arithmetic**
Demo: Float Arithmetic
Floating Point Arithmetic

Is this just overflowing? It turns out it’s more subtle.

```c
float a = 3.14;
float b = 1e20;
printf("(3.14 + 1e20) - 1e20 = %g\n", (a + b) - b); // prints 0
printf("3.14 + (1e20 - 1e20) = %g\n", a + (b - b)); // prints 3.14
```

Let’s look at the binary representations for 3.14 and 1e20:

```
3.14: 0 10000000 10010001111010111000011
1e20: 0 11000001 01011010111100011101100
```
Floating Point Arithmetic

To add real numbers, we must align their binary points:

3.14: 0 10000000 10010001111010111000011

1e20: 0 11000001 01011010111100011101100

What does this number look like in 32-bit IEEE format?

3.14
+ 1000000000000000000000000.00
10000000000000000000000003.14
Step 1: convert from base 10 to binary

What is 100000000000000003.14 in binary? Let’s find out!

1010110111100011101011110001011110001000000000000000011.0010001111011100001010011…
Floating Point Arithmetic

Step 2: find most significant 1 and take the next 23 digits for the fractional component, rounding if needed.

1 01011010111100011101100

1 01011010111100011101100
Step 3: find how many places we need to shift left to put the number in $1.xxx$ format. This fills in the exponent component.

101011010111100011101111000101101100011000100000000000000000011.001000111101110000101001...

66 shifts -> $66 + 127 = 193$
Step 4: if the sign is positive, the sign bit is 0. Otherwise, it’s 1.

Sign bit is 0.
Floating Point Arithmetic

The binary representation for $1e20 + 3.14$ thus equals the following:

<table>
<thead>
<tr>
<th></th>
<th>31</th>
<th>30</th>
<th>23</th>
<th>22</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>11000001</td>
<td>01011010111100011101100</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

This is the **same** as the binary representation for $1e20$ that we had before!

We didn’t have enough bits to differentiate between $1e20$ and $1e20 + 3.14$.
Floating Point Arithmetic

Is this just overflowing? It turns out it’s more subtle.

```c
float a = 3.14;
float b = 1e20;
printf("(3.14 + 1e20) - 1e20 = %g\n", (a + b) - b); // prints 0
printf("3.14 + (1e20 - 1e20) = %g\n", a + (b - b)); // prints 3.14
```

Floating point arithmetic is not associative. The order of operations matters!

- The first line loses precision when first adding 3.14 and 1e20, as we have seen.
- The second line first evaluates 1e20 – 1e20 = 0, and then adds 3.14
Demo: Float Equality
Floating Point Arithmetic

Float arithmetic is an issue with most languages, not just C!

• http://geocar.sdf1.org/numbers.html
Let’s Get Real

What would be nice to have in a real number representation?

• Represent widest range of numbers possible
• Flexible “floating” decimal point
• Represent scientific notation numbers, e.g. 1.2×10^6
• Still be able to compare quickly
• Have more predictable over/under-flow behavior
Floats Summary

• IEEE Floating Point is a carefully-thought-out standard. It’s complicated, but engineered for their goals.

• Floats have an extremely wide range, but cannot represent every number in that range.

• Some approximation and rounding may occur! This means you definitely don’t want to use floats e.g. for currency.

• Associativity does not hold for numbers far apart in the range

• Equality comparison operations are often unwise.
Recap

• **Recap**: Generics with Function Pointers
• Representing real numbers
• Fixed Point
• **Break**: Announcements
• Floating Point
• Floating Point Arithmetic

Next time: assembly language