CS107 Spring 2019, Lecture 2
Bits and Bytes; Integer Representations

reading:
Bryant & O’Hallaron, Ch. 2.2-2.3
CS107 Topic 1: How can a computer represent integer numbers?
Demo: Unexpected Behavior

cp -r /afs/ir/class/cs107/samples/lect2 .
Plan For Today

- Bits and Bytes
- Hexadecimal
- Integer Representations
- Unsigned Integers
- **Break**: Announcements
- Signed Integers
- Casting and Combining Types
Plan For Today

• Bits and Bytes
• Hexadecimal
• Integer Representations
• Unsigned Integers
• Break: Announcements
• Signed Integers
• Casting and Combining Types
• Computers are built around the idea of two states: “on” and “off”. Transistors represent this in hardware, and bits represent this in software!
One Bit At A Time

• We can combine bits, like with base-10 numbers, to represent more data. **8 bits = 1 byte.**

• Computer memory is just a large array of bytes! It is *byte-addressable*; you can’t address (store location of) a bit; only a byte.

• Computers still fundamentally operate on bits; we have just gotten more creative about how to represent different data as bits!

 • Images
 • Audio
 • Video
 • Text
 • And more...
Base 10

5 9 3 4

Digits 0-9 (0 to base-1)
Base 10

5 9 3 4

thousands hundreds tens ones
Base 10

5 9 3 4

thousands hundreds tens ones

= 5*1000 + 9*100 + 3*10 + 4*1
Base 10

\[5 \times 10^3 + 9 \times 10^2 + 3 \times 10^1 + 4 \times 10^0\]
Base 10

10^x: 3 2 1 0

5 9 3 4
Base 2

2^x: 3 2 1 0

1 0 1 1

Digits 0-1 (0 to base-1)
Base 2

1 0 1 1

2^3 2^2 2^1 2^0
Base 2

1011

eights fours twos ones

= 1*8 + 0*4 + 1*2 + 1*1 = 11_{10}
Base 2

1 0 1 1

= 1*8 + 0*4 + 1*2 + 1*1 = 11_{10}

Most significant bit (MSB) Least significant bit (LSB)

eights fours twos ones
Question: What is 6 in base 2?

• Strategy:
 • What is the largest power of 2 ≤ 6?
Question: What is 6 in base 2?

• Strategy:
 • What is the largest power of 2 ≤ 6? $2^2 = 4$
Base 10 to Base 2

Question: What is 6 in base 2?

Strategy:
- What is the largest power of 2 ≤ 6? $2^2 = 4$
- Now, what is the largest power of 2 ≤ 6 – 2^2?
Question: What is 6 in base 2?

• Strategy:
 - What is the largest power of 2 ≤ 6? $2^2 = 4$
 - Now, what is the largest power of 2 ≤ 6 − 2^2? $2^1 = 2$
Question: What is 6 in base 2?

• Strategy:
 • What is the largest power of 2 ≤ 6? $2^2 = 4$
 • Now, what is the largest power of 2 ≤ 6 – 2^2? $2^1 = 2$
 • $6 – 2^2 – 2^1 = 0!$
Question: What is 6 in base 2?

- **Strategy:**
 - What is the largest power of 2 ≤ 6? \(2^2 = 4\)
 - Now, what is the largest power of 2 ≤ 6 − 2^2? \(2^1 = 2\)
 - 6 − 2^2 − 2^1 = 0!

```
0 1 1 0
```

- \(2^3\)
- \(2^2\)
- \(2^1\)
- \(2^0\)
Question: What is 6 in base 2?

Strategy:
- What is the largest power of 2 ≤ 6? \(2^2 = 4\)
- Now, what is the largest power of 2 ≤ 6 – 2^2? \(2^1 = 2\)
- \(6 – 2^2 – 2^1 = 0!\)

\[
\begin{align*}
0 & \quad 1 & \quad 1 & \quad 0 \\
\hline
2^3 & 2^2 & 2^1 & 2^0 \\
\hline
= 0 \times 8 + 1 \times 4 + 1 \times 2 + 0 \times 1 & = 6
\end{align*}
\]
What is the base-2 value 1010 in base-10?

a) 20 (text code: 641180)
b) 101 (text code: 642224)
c) 10 (text code: 642225)
d) 5 (text code: 642226)
e) Other (text code: 642227)

Respond at pollev.com/nicktroccoli901 or text a code above to 22333.
To show this poll

1. Install the app from pollev.com/app
2. Start the presentation

Still not working? Get help at pollev.com/app/help or Open poll in your web browser
Practice: Base 10 to Base 2

What is the base-10 value 14 in base 2?

a) 1111 (text code: 642232)
b) 1110 (text code: 642233)
c) 1010 (text code: 642235)
d) Other (text code: 642236)

Respond at pollev.com/nicktroccoli901 or text a code above to 22333.
To show this poll

1. Install the app from pollev.com/app
2. Start the presentation

Still not working? Get help at pollev.com/app/help
or
Open poll in your web browser
Byte Values

• What is the minimum and maximum base-10 value a single byte (8 bits) can store?
• What is the minimum and maximum base-10 value a single byte (8 bits) can store? minimum = 0 maximum = ?
Byte Values

• What is the minimum and maximum base-10 value a single byte (8 bits) can store?

 minimum = 0
 maximum = ?

\[
\begin{array}{ccccccccc}
2^7 & 2^6 & 2^5 & 2^4 & 2^3 & 2^2 & 2^1 & 2^0 \\
11111111 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0
\end{array}
\]
• What is the minimum and maximum base-10 value a single byte (8 bits) can store?
 \text{minimum} = 0 \quad \text{maximum} = ?

\begin{align*}
11111111 \\
2^x: & \quad 7 \quad 6 \quad 5 \quad 4 \quad 3 \quad 2 \quad 1 \quad 0
\end{align*}

• \textbf{Strategy 1:} \quad 1 \times 2^7 + 1 \times 2^6 + 1 \times 2^5 + 1 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 = 255
Byte Values

• What is the minimum and maximum base-10 value a single byte (8 bits) can store?
 minimum = 0
 maximum = 255

11111111

2^x: 7 6 5 4 3 2 1 0

• Strategy 1: 1*2^7 + 1*2^6 + 1*2^5 + 1*2^4 + 1*2^3 + 1*2^2 + 1*2^1 + 1*2^0 = 255

• Strategy 2: 2^8 – 1 = 255
Multiplying by Base

1453 \times 10 = 14530

1101_2 \times 2 = 11010

Key Idea: inserting 0 at the end multiplies by the base!
Plan For Today

- Bits and Bytes
- **Hexadecimal**
 - Integer Representations
 - Unsigned Integers
 - **Break:** Announcements
 - Signed Integers
 - Casting and Combining Types
Hexadecimal

• When working with bits, oftentimes we have large numbers with 32 or 64 bits.
• Instead, we’ll represent bits in base-16 instead; this is called hexadecimal.

0110 1010 0011
Hexadecimal

- When working with bits, oftentimes we have large numbers with 32 or 64 bits.
- Instead, we’ll represent bits in base-16 instead; this is called hexadecimal.

```
0110
1010
0011
```

0-15 0-15 0-15
Hexadecimal

- When working with bits, oftentimes we have large numbers with 32 or 64 bits.
- Instead, we’ll represent bits in base-16 instead; this is called hexadecimal.

0-15 0-15 0-15

Each is a base-16 digit!
Hexadecimal

- Hexadecimal is *base-16*, so we need digits for 1-15. How do we do this?

0 1 2 3 4 5 6 7 8 9 a b c d e f
10 11 12 13 14 15
Hexadecimal

<table>
<thead>
<tr>
<th>Hex digit</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decimal value</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Binary value</td>
<td>0000</td>
<td>0001</td>
<td>0010</td>
<td>0011</td>
<td>0100</td>
<td>0101</td>
<td>0110</td>
<td>0111</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hex digit</th>
<th>8</th>
<th>9</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decimal value</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>Binary value</td>
<td>1000</td>
<td>1001</td>
<td>1010</td>
<td>1011</td>
<td>1100</td>
<td>1101</td>
<td>1110</td>
<td>1111</td>
</tr>
</tbody>
</table>
Hexadecimal

- We distinguish hexadecimal numbers by prefixing them with `0x`, and binary numbers with `0b`.
- E.g. `0xf5` is `0b11110101`
What is $0x173A$ in binary?
Practice: Hexadecimal to Binary

What is $0x173A$ in binary?

<table>
<thead>
<tr>
<th>Hexadecimal</th>
<th>1</th>
<th>7</th>
<th>3</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binary</td>
<td>0001</td>
<td>0111</td>
<td>0011</td>
<td>1010</td>
</tr>
</tbody>
</table>
Practice: Hexadecimal to Binary

What is $0b1111001010110110110011$ in hexadecimal? (*Hint: start from the right*)
What is $0b1111001010110110110011$ in hexadecimal? *(Hint: start from the right)*

<table>
<thead>
<tr>
<th>Binary</th>
<th>11</th>
<th>1100</th>
<th>1010</th>
<th>1101</th>
<th>1011</th>
<th>0011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hexadecimal</td>
<td>3</td>
<td>C</td>
<td>A</td>
<td>D</td>
<td>B</td>
<td>3</td>
</tr>
</tbody>
</table>
Plan For Today

• Bits and Bytes
• Hexadecimal
• **Integer Representations**
• Unsigned Integers
• **Break**: Announcements
• Signed Integers
• Casting and Combining Types
Number Representations

- **Unsigned Integers**: positive and 0 integers. (e.g. 0, 1, 2, ... 99999...)
- **Signed Integers**: negative, positive and 0 integers. (e.g. ...-2, -1, 0, 1,... 9999...)
- **Floating Point Numbers**: real numbers. (e.g. 0.1, -12.2, 1.5x10^{12})
Number Representations

- **Unsigned Integers**: positive and 0 integers. (e.g. 0, 1, 2, ... 99999...
- **Signed Integers**: negative, positive and 0 integers. (e.g. ...-2, -1, 0, 1,... 9999...)
- **Floating Point Numbers**: real numbers. (e.g. 0.1, -12.2, 1.5\times 10^{12})

Stay tuned until week 5!
• In the early 2000’s, most computers were 32-bit. This means that pointers in programs were 32 bits.

• 32-bit pointers could store a memory address from 0 to $2^{32}-1$, for a total of 2^{32} bytes of addressable memory. This equals 4 Gigabytes, meaning that 32-bit computers could have at most 4GB of memory (RAM)!

• Because of this, computers transitioned to 64-bit. This means that pointers in programs were 64 bits.

• 64-bit pointers could store a memory address from 0 to $2^{64}-1$, for a total of 2^{64} bytes of addressable memory. This equals 16 Exabytes, meaning that 64-bit computers could have at most $1024 \times 1024 \times 1024$ GB of memory (RAM)!
Number Representations

<table>
<thead>
<tr>
<th>C declaration</th>
<th>Bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Signed</td>
<td>Unsigned</td>
</tr>
<tr>
<td>[signed] char</td>
<td>unsigned char</td>
</tr>
<tr>
<td>short</td>
<td>unsigned short</td>
</tr>
<tr>
<td>int</td>
<td>unsigned</td>
</tr>
<tr>
<td>long</td>
<td>unsigned long</td>
</tr>
<tr>
<td>int32_t</td>
<td>uint32_t</td>
</tr>
<tr>
<td>int64_t</td>
<td>uint64_t</td>
</tr>
<tr>
<td>char *</td>
<td></td>
</tr>
<tr>
<td>float</td>
<td></td>
</tr>
<tr>
<td>double</td>
<td></td>
</tr>
</tbody>
</table>
Number Representations

<table>
<thead>
<tr>
<th>C declaration</th>
<th>Bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signed</td>
<td>32-bit</td>
</tr>
<tr>
<td>[signed] char</td>
<td>1</td>
</tr>
<tr>
<td>short</td>
<td>2</td>
</tr>
<tr>
<td>int</td>
<td>4</td>
</tr>
<tr>
<td>long</td>
<td>4</td>
</tr>
<tr>
<td>int32_t</td>
<td>4</td>
</tr>
<tr>
<td>int64_t</td>
<td>8</td>
</tr>
<tr>
<td>char *</td>
<td>4</td>
</tr>
<tr>
<td>float</td>
<td>4</td>
</tr>
<tr>
<td>double</td>
<td>8</td>
</tr>
</tbody>
</table>

Myth
Plan For Today

• Bits and Bytes
• Hexadecimal
• Integer Representations
• **Unsigned Integers**
• **Break:** Announcements
• Signed Integers
• Casting and Combining Types
Unsigned Integers

• An **unsigned** integer is 0 or a positive integer (no negatives).
• We have already discussed converting between decimal and binary, which is a nice 1:1 relationship. Examples:

 \[\begin{align*}
0b0001 &= 1 \\
0b0101 &= 5 \\
0b1011 &= 11 \\
0b1111 &= 15 \\
\end{align*} \]

• The range of an unsigned number is \(0 \rightarrow 2^w - 1\), where \(w\) is the number of bits. E.g. a 32-bit integer can represent 0 to \(2^{32} - 1\) (4,294,967,295).
Unsigned Integers

4-bit unsigned integer representation

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
Plan For Today

• Bits and Bytes
• Hexadecimal
• Integer Representations
• Unsigned Integers
• **Break:** Announcements
• Signed Integers
• Casting and Combining Types
Announcements

• Sign up for Piazza on the Help page if you haven’t already!
• Lab signups opened earlier this week, start next week.
 • Labs posted on the course website at the start of each week
• Office Hours started earlier this week
 • You must fill out signup questions completely when signing up
• Please send course staff OAE letters for accommodations!
Let’s Take A Break

To ponder during the break:

A **signed** integer is a negative, 0, or positive integer. How can we represent both negative *and* positive numbers in binary?
Plan For Today

• Bits and Bytes
• Hexadecimal
• Integer Representations
• Unsigned Integers
• **Break:** Announcements
• **Signed Integers**
• Casting and Combining Types
Signed Integers

• A **signed** integer is a negative integer, 0, or a positive integer.
• *Problem:* How can we represent negative *and* positive numbers in binary?
Signed Integers

• A **signed** integer is a negative integer, 0, or a positive integer.
• *Problem*: How can we represent negative *and* positive numbers in binary?

Idea: let’s reserve the *most significant bit* to store the sign.
Sign Magnitude Representation

0110
positive 6

1011
negative 3
Sign Magnitude Representation

0000

positive 0

1000

negative 0
<table>
<thead>
<tr>
<th>Binary</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 000</td>
<td>-0</td>
</tr>
<tr>
<td>1 001</td>
<td>-1</td>
</tr>
<tr>
<td>1 010</td>
<td>-2</td>
</tr>
<tr>
<td>1 011</td>
<td>-3</td>
</tr>
<tr>
<td>1 100</td>
<td>-4</td>
</tr>
<tr>
<td>1 101</td>
<td>-5</td>
</tr>
<tr>
<td>1 110</td>
<td>-6</td>
</tr>
<tr>
<td>1 111</td>
<td>-7</td>
</tr>
<tr>
<td>0 000</td>
<td>0</td>
</tr>
<tr>
<td>0 001</td>
<td>1</td>
</tr>
<tr>
<td>0 010</td>
<td>2</td>
</tr>
<tr>
<td>0 011</td>
<td>3</td>
</tr>
<tr>
<td>0 100</td>
<td>4</td>
</tr>
<tr>
<td>0 101</td>
<td>5</td>
</tr>
<tr>
<td>0 110</td>
<td>6</td>
</tr>
<tr>
<td>0 111</td>
<td>7</td>
</tr>
</tbody>
</table>

- We’ve only represented 15 of our 16 available numbers!
Sign Magnitude Representation

- **Pro:** easy to represent, and easy to convert to/from decimal.
- **Con:** +-0 is not intuitive
- **Con:** we lose a bit that could be used to store more numbers
- **Con:** arithmetic is tricky: we need to find the sign, then maybe subtract (borrow and carry, etc.), then maybe change the sign...this might get ugly!

Can we do better?
• Ideally, binary addition would *just work regardless* of whether the number is positive or negative.

\[
\begin{array}{c}
0101 \\
+????
\end{array}
\]

\[
\begin{array}{c}
\hline
0000
\end{array}
\]
• Ideally, binary addition would *just work regardless* of whether the number is positive or negative.

\[
\begin{array}{c}
0101 \\
+1011 \\
\hline
0000
\end{array}
\]
A Better Idea

• Ideally, binary addition would *just work regardless* of whether the number is positive or negative.

\[
\begin{array}{c}
0011 \\
+\quad?\quad?\quad?\quad?\quad?\quad? \\
\hline \\
0000
\end{array}
\]
A Better Idea

• Ideally, binary addition would just work regardless of whether the number is positive or negative.

\[
\begin{array}{c}
0011 \\
+1101 \\
\hline
0000
\end{array}
\]
• Ideally, binary addition would *just work regardless* of whether the number is positive or negative.
A Better Idea

• Ideally, binary addition would *just work regardless* of whether the number is positive or negative.

\[
\begin{array}{c}
00000 \\
+00000 \\
\hline
00000
\end{array}
\]
<table>
<thead>
<tr>
<th>Decimal</th>
<th>Positive</th>
<th>Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000</td>
<td>0000</td>
</tr>
<tr>
<td>1</td>
<td>0001</td>
<td>1111</td>
</tr>
<tr>
<td>2</td>
<td>0010</td>
<td>1110</td>
</tr>
<tr>
<td>3</td>
<td>0011</td>
<td>1101</td>
</tr>
<tr>
<td>4</td>
<td>0100</td>
<td>1100</td>
</tr>
<tr>
<td>5</td>
<td>0101</td>
<td>1011</td>
</tr>
<tr>
<td>6</td>
<td>0110</td>
<td>1010</td>
</tr>
<tr>
<td>7</td>
<td>0111</td>
<td>1001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Positive</th>
<th>Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>9</td>
<td>1001 (same as -7!)</td>
<td>NA</td>
</tr>
<tr>
<td>10</td>
<td>1010 (same as -6!)</td>
<td>NA</td>
</tr>
<tr>
<td>11</td>
<td>1011 (same as -5!)</td>
<td>NA</td>
</tr>
<tr>
<td>12</td>
<td>1100 (same as -4!)</td>
<td>NA</td>
</tr>
<tr>
<td>13</td>
<td>1101 (same as -3!)</td>
<td>NA</td>
</tr>
<tr>
<td>14</td>
<td>1110 (same as -2!)</td>
<td>NA</td>
</tr>
<tr>
<td>15</td>
<td>1111 (same as -1!)</td>
<td>NA</td>
</tr>
</tbody>
</table>
There Seems Like a Pattern Here...

\[
\begin{array}{ccc}
0101 & + & 1011 \\
0000 & + & 1101 \\
0000 & + & 0000 \\
\end{array}
\]

- The negative number is the positive number inverted, plus one!
There Seems Like a Pattern Here…

A binary number plus its inverse is all 1s.

\[
\begin{array}{c}
0101 \\
+1010 \\
\hline
1111
\end{array}
\]

Add 1 to this to carry over all 1s and get 0!

\[
\begin{array}{c}
1111 \\
+0001 \\
\hline
0000
\end{array}
\]
Another Trick

• To find the negative equivalent of a number, work right-to-left and write down all digits *through* when you reach a 1. Then, invert the rest of the digits.

\[
\begin{array}{l}
100100 \\
+ ????\\n\hline
0000000
\end{array}
\]
Another Trick

• To find the negative equivalent of a number, work right-to-left and write down all digits *through* when you reach a 1. Then, invert the rest of the digits.

\[
\begin{array}{c}
100100 \\
+ \text{???100} \\
\hline
0000000
\end{array}
\]
Another Trick

• To find the negative equivalent of a number, work right-to-left and write down all digits *through* when you reach a 1. Then, invert the rest of the digits.

\[
\begin{align*}
100100 & \quad \text{Original number} \\
+ \quad 011100 & \quad \text{Invert the rest} \\
\hline
0000000 & \quad \text{Result}
\end{align*}
\]
Two’s Complement

4-bit two's complement signed integer representation
Two’s Complement

• In two’s complement, we represent a positive number as itself, and its negative equivalent as the two’s complement of itself.

• The two’s complement of a number is the binary digits inverted, plus 1.

• This works to convert from positive to negative, and back from negative to positive!
Two’s Complement

- **Con:** more difficult to represent, and difficult to convert to/from decimal and between positive and negative.
- **Pro:** only 1 representation for 0!
- **Pro:** all bits are used to represent as many numbers as possible
- **Pro:** it turns out that the most significant bit *still indicates the sign* of a number.
- **Pro:** arithmetic is easy: we just add!
Two’s Complement

- Adding two numbers is just...adding! There is no special case needed for negatives. E.g. what is 2 + -5?

\[
\begin{array}{c}
0010 \\
+1011 \\
\hline
1101
\end{array}
\]

2 + -5 = -3
Two’s Complement

- Subtracting two numbers is just performing the two’s complement on one of them and then adding. E.g. $4 - 5 = -1$.

\[
\begin{array}{c}
0100 \\
-0101 \\
\hline
-011 \quad (5)
\end{array}
\quad
\begin{array}{c}
0100 \\
+1011 \\
\hline
1111 \quad (-1)
\end{array}
\quad
\begin{array}{c}
0100 \\
+1011 \\
\hline
1111 \quad (-1)
\end{array}
\]
Two’s Complement

• While you don’t need to worry about multiplication, it turns out that with two’s complement, multiplying two numbers is just multiplying, and discarding overflow digits! E.g. \(-2 \times -3 = 6\).

\[
\begin{array}{c}
1110 (-2) \\
\times 1101 (-3) \\
1110 \\
0000 \\
1110 \\
+1110 \\
10110110 (6)
\end{array}
\]
Practice: Two’s Complement

What are the negative or positive equivalents of the numbers below?

a) -4 (1100)

b) 7 (0111)

c) 3 (0011)

d) -8 (1000)
Practice: Two’s Complement

What are the negative or positive equivalents of the numbers below?

a) -4 (1100)
b) 7 (0111)
c) 3 (0011)
d) -8 (1000)
Plan For Today

• Bits and Bytes
• Hexadecimal
• Integer Representations
• Unsigned Integers
• **Break:** Announcements
• Signed Integers
• **Casting and Combining Types**
Overflow and Underflow

• If you exceed the **maximum** value of your bit representation, you *wrap around* or *overflow* back to the **smallest** bit representation.

\[0b1111 + 0b1 = 0b0000\]

• If you go below the **minimum** value of your bit representation, you *wrap around* or *underflow* back to the **largest** bit representation.

\[0b0000 - 0b1 = 0b1111\]
<table>
<thead>
<tr>
<th>Type</th>
<th>Width (bytes)</th>
<th>Width (bits)</th>
<th>Min in hex (name)</th>
<th>Max in hex (name)</th>
</tr>
</thead>
<tbody>
<tr>
<td>char</td>
<td>1</td>
<td>8</td>
<td>80 (CHAR_MIN)</td>
<td>7F (CHAR_MAX)</td>
</tr>
<tr>
<td>unsigned char</td>
<td>1</td>
<td>8</td>
<td>0</td>
<td>FF (UCHAR_MAX)</td>
</tr>
<tr>
<td>short</td>
<td>2</td>
<td>16</td>
<td>8000 (SHRT_MIN)</td>
<td>7FFF (SHRT_MAX)</td>
</tr>
<tr>
<td>unsigned short</td>
<td>2</td>
<td>16</td>
<td>0</td>
<td>FFFF (USHRT_MAX)</td>
</tr>
<tr>
<td>int</td>
<td>4</td>
<td>32</td>
<td>80000000 (INT_MIN)</td>
<td>7FFFFFFFF (INT_MAX)</td>
</tr>
<tr>
<td>unsigned int</td>
<td>4</td>
<td>32</td>
<td>0</td>
<td>FFFFFFFFF (UINT_MAX)</td>
</tr>
<tr>
<td>long</td>
<td>8</td>
<td>64</td>
<td>80000000000000000000 (LONG_MIN)</td>
<td>7FFFFFFFFFFFFFFFFFFFFFFFFFFFF (LONG_MAX)</td>
</tr>
<tr>
<td>unsigned long</td>
<td>8</td>
<td>64</td>
<td>0</td>
<td>FFFFFFFFFFFFFFFFFFFFFFF (ULONG_MAX)</td>
</tr>
</tbody>
</table>
Overflow and Underflow

+1

111...111 000...000 000...001 000...010 000...011
111...110 000...001 000...010 000...011
111...101 000...001 000...010 000...011
111...100 000...001 000...010 000...011
...
...
100...010 011...101...
100...001 011...110 011...111
100...000 011...110 011...111
+

...
At which points can overflow occur for signed and unsigned int? (assume binary values shown are all 32 bits)

A. Signed and unsigned can both overflow at points X and Y
B. Signed can overflow only at X, unsigned only at Y
C. Signed can overflow only at Y, unsigned only at X
D. Signed can overflow at X and Y, unsigned only at X
E. Other
Unsigned Integers

Discontinuity means overflow possible here

Increasing positive numbers

More increasing positive numbers

≈+4billion
Signed Numbers

Discontinuity means overflow possible here

Increasing positive numbers

≈+2billion

≈-2billion

Increasing positive numbers

Negative numbers becoming less negative (i.e. increasing)
Overflow In Practice: PSY

YouTube: “We never thought a video would be watched in numbers greater than a 32-bit integer (=2,147,483,647 views), but that was before we met PSY. "Gangnam Style" has been viewed so many times we had to upgrade to a 64-bit integer (9,223,372,036,854,775,808)!"
Many systems store timestamps as the number of seconds since Jan. 1, 1970 in a signed 32-bit integer.

Problem: the latest timestamp that can be represented this way is 3:14:07 UTC on Jan. 13 2038!
Underflow In Practice: Gandhi

• In the game “Civilization”, each civilization leader had an “aggression” rating. Gandhi was meant to be peaceful, and had a score of 1.

• If you adopted “democracy”, all players’ aggression reduced by 2. Gandhi’s went from 1 to 255!

• Gandhi then became a big fan of nuclear weapons.

https://kotaku.com/why-gandhi-is-such-an-asshole-in-civilization-1653818245
Recap

- Bits and Bytes
- Hexadecimal
- Integer Representations
- Unsigned Integers
- **Break:** Announcements
- Signed Integers
- Casting and Combining Types

Next time: How can we manipulate individual bits and bytes?
There are 3 placeholders for 32-bit integers that we can use:

- `%d`: signed 32-bit int
- `%u`: unsigned 32-bit int
- `%x`: hex 32-bit int

As long as the value is a 32-bit type, `printf` will treat it according to the placeholder!
Casting

• What happens at the byte level when we cast between variable types? The bytes remain the same! This means they may be interpreted differently depending on the type.

```c
int v = -12345;
unsigned int uv = v;
printf("v = %d, uv = %u\n", v, uv);
```

This prints out: "v = -12345, uv = 4294954951". Why?
Casting

• What happens at the byte level when we cast between variable types? The bytes remain the same! This means they may be interpreted differently depending on the type.

```c
int v = -12345;
unsigned int uv = v;
printf("v = %d, uv = %u\n", v, uv);
```

The bit representation for -12345 is `0b11000000111001`. If we treat this binary representation as a positive number, it’s huge!
Casting

4-bit two's complement signed integer representation

4-bit unsigned integer representation
Comparisons Between Different Types

- **Be careful** when comparing signed and unsigned integers. **C will implicitly cast** the signed argument to unsigned, and then performs the operation assuming both numbers are non-negative.

<table>
<thead>
<tr>
<th>Expression</th>
<th>Type</th>
<th>Evaluation</th>
<th>Correct?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 == 0U</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1 < 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1 < 0U</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2147483647 > -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2147483647 - 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2147483647U > -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2147483647 - 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2147483647 ></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(int)2147483648U</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1 > -2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(unsigned)-1 > -2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Comparisons Between Different Types

- **Be careful** when comparing signed and unsigned integers. **C will implicitly cast** the signed argument to unsigned, and then performs the operation assuming both numbers are non-negative.

<table>
<thead>
<tr>
<th>Expression</th>
<th>Type</th>
<th>Evaluation</th>
<th>Correct?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 == 0U</td>
<td>Unsigned</td>
<td>1</td>
<td>yes</td>
</tr>
<tr>
<td>-1 < 0</td>
<td>Signed</td>
<td>1</td>
<td>yes</td>
</tr>
<tr>
<td>-1 < 0U</td>
<td>Unsigned</td>
<td>0</td>
<td>No!</td>
</tr>
<tr>
<td>2147483647 > -2147483647 - 1</td>
<td>Signed</td>
<td>1</td>
<td>yes</td>
</tr>
<tr>
<td>2147483647U > -2147483647 - 1</td>
<td>Unsigned</td>
<td>0</td>
<td>No!</td>
</tr>
<tr>
<td>2147483647 > (int)2147483648U</td>
<td>Signed</td>
<td>1</td>
<td>No!</td>
</tr>
<tr>
<td>-1 > -2</td>
<td>Signed</td>
<td>1</td>
<td>yes</td>
</tr>
<tr>
<td>(unsigned)-1 > -2</td>
<td>Unsigned</td>
<td>1</td>
<td>yes</td>
</tr>
</tbody>
</table>
Comparisons Between Different Types

Which many of the following statements are true? (assume that variables are set to values that place them in the spots shown)

s3 > u3
u2 > u4
s2 > s4
s1 > s2
u1 > u2
s1 > u3
Comparisons Between Different Types

Which many of the following statements are true? (assume that variables are set to values that place them in the spots shown)

- \(s_3 > u_3 \)
- \(u_2 > u_4 \)
- \(s_2 > s_4 \)
- \(s_1 > s_2 \)
- \(u_1 > u_2 \)
- \(s_1 > u_3 \)
Comparisons Between Different Types

Which many of the following statements are true? (assume that variables are set to values that place them in the spots shown)

- $s_3 > u_3$ - true
- $u_2 > u_4$ - true
- $s_2 > s_4$ - false
- $s_1 > s_2$ - true
- $u_1 > u_2$ - true
- $s_1 > u_3$ - true
Expanding Bit Representations

• Sometimes, we want to convert between two integers of different sizes (e.g. short to int, or int to long).

• We might not be able to convert from a bigger data type to a smaller data type, but we do want to always be able to convert from a smaller data type to a bigger data type.

• For unsigned values, we can add leading zeros to the representation ("zero extension")

• For signed values, we can repeat the sign of the value for new digits ("sign extension")

• Note: when doing <, >, <=, >= comparison between different size types, it will promote to the larger type.
unsigned short s = 4;
// short is a 16-bit format, so
s = 0000 0000 0000 0100b

unsigned int i = s;
// conversion to 32-bit int, so i = 0000 0000 0000 0000 0000 0000 0000 0100b
short s = 4;
// short is a 16-bit format, so s = 0000 0000 0000 0100b

int i = s;
// conversion to 32-bit int, so i = 0000 0000 0000 0000 0000 0000 0000 0100b

— or —

short s = -4;
// short is a 16-bit format, so s = 1111 1111 1111 1100b

int i = s;
// conversion to 32-bit int, so i = 1111 1111 1111 1111 1111 1111 1111 1100b
If we want to **reduce** the bit size of a number, C *truncates* the representation and discards the *more significant bits*.

```c
int x = 53191;
short sx = x;
int y = sx;
```

What happens here? Let's look at the bits in `x` (a 32-bit `int`), 53191:

```
0000 0000 0000 0000 1100 1111 1100 0111
```

When we cast `x` to a short, it only has 16-bits, and C *truncates* the number:

```
1100 1111 1100 0111
```

This is -12345! And when we cast `sx` back an `int`, we sign-extend the number.

```
1111 1111 1111 1111 1100 1111 1100 0111  // still -12345
```
If we want to **reduce** the bit size of a number, C **truncates** the representation and discards the *more significant bits*.

```c
int x = -3;
short sx = x;
int y = sx;
```

What happens here? Let's look at the bits in `x` (a 32-bit int), -3:

1111 1111 1111 1111 1111 1111 1111 1101

When we cast `x` to a short, it only has 16-bits, and C **truncates** the number:

1111 1111 1111 1101

This is -3! **If the number does fit, it will convert fine.** `y` looks like this:

1111 1111 1111 1111 1111 1111 1111 1101 // still -3
If we want to **reduce** the bit size of a number, C *truncates* the representation and discards the *more significant bits*.

```cpp
unsigned int x = 128000;
unsigned short sx = x;
unsigned int y = sx;
```

What happens here? Let's look at the bits in `x` (a 32-bit unsigned int), 128000:

```
0000 0000 0000 0001 1111 0100 0000 0000
```

When we cast `x` to a short, it only has 16-bits, and C *truncates* the number:

```
1111 0100 0000 0000
```

This is 62464! **Unsigned numbers can lose info too.** Here is what `y` looks like:

```
0000 0000 0000 0000 1111 0100 0000 0000  // still 62464
```
The sizeof Operator

- **sizeof** takes a variable type as a parameter and returns the number of bytes that type uses.

```c
printf("sizeof(char): %d\n", (int) sizeof(char));
printf("sizeof(short): %d\n", (int) sizeof(short));
printf("sizeof(int): %d\n", (int) sizeof(int));
printf("sizeof(unsigned int): %d\n", (int) sizeof(unsigned int));
printf("sizeof(long): %d\n", (int) sizeof(long));
printf("sizeof(long long): %d\n", (int) sizeof(long long));
printf("sizeof(size_t): %d\n", (int) sizeof(size_t));
printf("sizeof(void *): %d\n", (int) sizeof(void *));
```

```
$ ./sizeof
sizeof(char): 1
sizeof(short): 2
sizeof(int): 4
sizeof(unsigned int): 4
sizeof(long): 8
sizeof(long long): 8
sizeof(size_t): 8
sizeof(void *): 8
```

<table>
<thead>
<tr>
<th>Type</th>
<th>Width in bytes</th>
<th>Width in bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>char</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>short</td>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>int</td>
<td>4</td>
<td>32</td>
</tr>
<tr>
<td>long</td>
<td>8</td>
<td>64</td>
</tr>
<tr>
<td>void *</td>
<td>8</td>
<td>64</td>
</tr>
</tbody>
</table>