
1
This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Marty Stepp, Cynthia Lee, Chris Gregg, and others.

CS107, Lecture 3
Bits and Bytes; Bitwise Operators

reading:
Bryant & O’Hallaron, Ch. 2.1

2

Plan For Today
• Recap: Integer Representations
• Truncating and Expanding
• Bitwise Operators and Masks
• Demo 1: Courses
• Break: Announcements
• Demo 2: Powers of 2
• Bit Shift Operators

3

Plan For Today
• Recap: Integer Representations
• Truncating and Expanding
• Bitwise Operators and Masks
• Demo 1: Courses
• Break: Announcements
• Demo 2: Powers of 2
• Bit Shift Operators

4

Base 2

1 0 1 1
20212223

5

Hexadecimal

6

Unsigned Integers

7

Signed Integers: Two’s Complement
• In two’s complement, we represent a

positive number as itself, and its
negative equivalent as the two’s
complement of itself.
• The two’s complement of a number is

the binary digits inverted, plus 1.
• This works to convert from positive to

negative, and back from negative to
positive!

8

Signed Integers: Two’s Complement
• Con: more difficult to represent, and

difficult to convert to/from decimal and
between positive and negative.
• Pro: only 1 representation for 0!
• Pro: all bits are used to represent as

many numbers as possible
• Pro: it turns out that the most significant

bit still indicates the sign of a number.
• Pro: arithmetic is easy: we just add!

9

Overflow and Underflow
• If you exceed the maximum value of your bit representation, you wrap around

or overflow back to the smallest bit representation.

0b1111 + 0b1 = 0b0000

• If you go below the minimum value of your bit representation, you wrap
around or underflow back to the largest bit representation.

0b0000 - 0b1 = 0b1111

10

Unsigned Integers

000…000111…111

011…111100…000

000…001
000…010

000…011

111…110
111…101

111…100

100…001
100…010

011…110
011…101

……

0≈+4billion

Discontinuity
means overflow

possible here

Increasing positive
num

bers

M
or

e
in

cr
ea

si
ng

 p
os

iti
ve

nu
m

be
rs

11

Signed Numbers

000…000111…111

011…111100…000

000…001
000…010

000…011

111…110
111…101

111…100

100…001
100…010

011…110
011…101

……

0-1

Discontinuity
means overflow

possible here

Increasing positive num
bers

N
eg

at
iv

e
nu

m
be

rs
be

co
m

in
g

le
ss

 n
eg

at
iv

e
(i.

e.
 in

cr
ea

si
ng

)

≈+2billion≈-2billion

+1

12

Aside: ASCII
• ASCII is an encoding from common characters (letters, symbols, etc.) to bit

representations (chars).
• E.g. 'A’ is 0x41

• Neat property: all uppercase letters, and all lowercase letters, are sequentially
represented!
• E.g. 'B’ is 0x42

13

printf and Integers
• There are 3 placeholders for 32-bit integers that we can use:
• %d: signed 32-bit int
• %u: unsigned 32-bit int
• %x: hex 32-bit int

• As long as the value is a 32-bit type, printf will treat it according to the
placeholder!

14

Casting
• What happens at the byte level when we cast between variable types? The

bytes remain the same! This means they may be interpreted differently
depending on the type.

int v = -12345;
unsigned int uv = v;
printf("v = %d, uv = %u\n", v, uv);

This prints out: "v = -12345, uv = 4294954951". Why?

15

Casting
• What happens at the byte level when we cast between variable types? The

bytes remain the same! This means they may be interpreted differently
depending on the type.

int v = -12345;
unsigned int uv = v;
printf("v = %d, uv = %u\n", v, uv);

-12345 in binary is 1111 1111 1111 1111 1100 1111 1100 0111.
If we treat this binary representation as a positive number, it’s huge!

16

Casting

17

Comparisons Between Different Types
Be careful when comparing signed and unsigned integers. C will implicitly cast
the signed argument to unsigned, and then performs the operation assuming
both numbers are non-negative.

Expression Type Evaluation Correct?
0 == 0U
-1 < 0
-1 < 0U
2147483647 > -
2147483647 - 1
2147483647U > -
2147483647 - 1
2147483647 >
(int)2147483648U
-1 > -2
(unsigned)-1 > -2

18

Comparisons Between Different Types
Be careful when comparing signed and unsigned integers. C will implicitly cast
the signed argument to unsigned, and then performs the operation assuming
both numbers are non-negative.

Expression Type Evaluation Correct?
0 == 0U Unsigned true yes
-1 < 0
-1 < 0U
2147483647 > -
2147483647 - 1
2147483647U > -
2147483647 - 1
2147483647 >
(int)2147483648U
-1 > -2
(unsigned)-1 > -2

19

Comparisons Between Different Types
Be careful when comparing signed and unsigned integers. C will implicitly cast
the signed argument to unsigned, and then performs the operation assuming
both numbers are non-negative.

Expression Type Evaluation Correct?
0 == 0U Unsigned true yes
-1 < 0 Signed true yes
-1 < 0U
2147483647 > -
2147483647 - 1
2147483647U > -
2147483647 - 1
2147483647 >
(int)2147483648U
-1 > -2
(unsigned)-1 > -2

20

Comparisons Between Different Types
Be careful when comparing signed and unsigned integers. C will implicitly cast
the signed argument to unsigned, and then performs the operation assuming
both numbers are non-negative.

Expression Type Evaluation Correct?
0 == 0U Unsigned true yes
-1 < 0 Signed true yes
-1 < 0U Unsigned false no!
2147483647 > -
2147483647 - 1
2147483647U > -
2147483647 - 1
2147483647 >
(int)2147483648U
-1 > -2
(unsigned)-1 > -2

21

Comparisons Between Different Types
Be careful when comparing signed and unsigned integers. C will implicitly cast
the signed argument to unsigned, and then performs the operation assuming
both numbers are non-negative.

Expression Type Evaluation Correct?
0 == 0U Unsigned true yes
-1 < 0 Signed true yes
-1 < 0U Unsigned false no!
2147483647 > -
2147483647 - 1 Signed true yes

2147483647U > -
2147483647 - 1
2147483647 >
(int)2147483648U
-1 > -2
(unsigned)-1 > -2

22

Comparisons Between Different Types
Be careful when comparing signed and unsigned integers. C will implicitly cast
the signed argument to unsigned, and then performs the operation assuming
both numbers are non-negative.

Expression Type Evaluation Correct?
0 == 0U Unsigned true yes
-1 < 0 Signed true yes
-1 < 0U Unsigned false no!
2147483647 > -
2147483647 - 1 Signed true yes

2147483647U > -
2147483647 - 1 Unsigned false no!

2147483647 >
(int)2147483648U
-1 > -2
(unsigned)-1 > -2

23

Comparisons Between Different Types
Be careful when comparing signed and unsigned integers. C will implicitly cast
the signed argument to unsigned, and then performs the operation assuming
both numbers are non-negative.

Expression Type Evaluation Correct?
0 == 0U Unsigned true yes
-1 < 0 Signed true yes
-1 < 0U Unsigned false no!
2147483647 > -
2147483647 - 1 Signed true yes

2147483647U > -
2147483647 - 1 Unsigned false no!

2147483647 >
(int)2147483648U Signed true no!

-1 > -2
(unsigned)-1 > -2

24

Comparisons Between Different Types
Be careful when comparing signed and unsigned integers. C will implicitly cast
the signed argument to unsigned, and then performs the operation assuming
both numbers are non-negative.

Expression Type Evaluation Correct?
0 == 0U Unsigned true yes
-1 < 0 Signed true yes
-1 < 0U Unsigned false no!
2147483647 > -
2147483647 - 1 Signed true yes

2147483647U > -
2147483647 - 1 Unsigned false no!

2147483647 >
(int)2147483648U Signed true no!

-1 > -2 Signed true yes
(unsigned)-1 > -2

25

Comparisons Between Different Types
Be careful when comparing signed and unsigned integers. C will implicitly cast
the signed argument to unsigned, and then performs the operation assuming
both numbers are non-negative.

Expression Type Evaluation Correct?
0 == 0U Unsigned true yes
-1 < 0 Signed true yes
-1 < 0U Unsigned false no!
2147483647 > -
2147483647 - 1 Signed true yes

2147483647U > -
2147483647 - 1 Unsigned false no!

2147483647 >
(int)2147483648U Signed true no!

-1 > -2 Signed true yes
(unsigned)-1 > -2 Unsigned true yes

26

Comparisons Between Different Types

Which of the following statements are true? (assume that
variables are set to values that place them in the spots shown)

1. s3 > u3
2. u2 > u4
3. s2 > s4
4. s1 > s2
5. u1 > u2
6. s1 > u3

27

Comparisons Between Different Types

Which of the following statements are true? (assume that
variables are set to values that place them in the spots shown)

1. s3 > u3 - true
2. u2 > u4
3. s2 > s4
4. s1 > s2
5. u1 > u2
6. s1 > u3

28

Comparisons Between Different Types

Which of the following statements are true? (assume that
variables are set to values that place them in the spots shown)

1. s3 > u3 - true
2. u2 > u4 - true
3. s2 > s4
4. s1 > s2
5. u1 > u2
6. s1 > u3

29

Comparisons Between Different Types

Which of the following statements are true? (assume that
variables are set to values that place them in the spots shown)

1. s3 > u3 - true
2. u2 > u4 - true
3. s2 > s4 - false
4. s1 > s2
5. u1 > u2
6. s1 > u3

30

Comparisons Between Different Types

Which of the following statements are true? (assume that
variables are set to values that place them in the spots shown)

1. s3 > u3 - true
2. u2 > u4 - true
3. s2 > s4 - false
4. s1 > s2 - true
5. u1 > u2
6. s1 > u3

31

Comparisons Between Different Types

Which of the following statements are true? (assume that
variables are set to values that place them in the spots shown)

1. s3 > u3 - true
2. u2 > u4 - true
3. s2 > s4 - false
4. s1 > s2 - true
5. u1 > u2 - true
6. s1 > u3

32

Comparisons Between Different Types

Which of the following statements are true? (assume that
variables are set to values that place them in the spots shown)

1. s3 > u3 - true
2. u2 > u4 - true
3. s2 > s4 - false
4. s1 > s2 - true
5. u1 > u2 - true
6. s1 > u3 - true

33

Plan For Today
• Recap: Integer Representations
• Truncating and Expanding
• Bitwise Operators and Masks
• Demo 1: Courses
• Break: Announcements
• Demo 2: Powers of 2
• Bit Shift Operators

34

Expanding Bit Representations
• Sometimes, we want to convert between two integers of different sizes (e.g.

short to int, or int to long).
• We might not be able to convert from a bigger data type to a smaller data

type, but we do want to always be able to convert from a smaller data type to
a bigger data type.
• For unsigned values, we can add leading zeros to the representation (“zero

extension”)
• For signed values, we can repeat the sign of the value for new digits (“sign

extension”
• Note: when doing <, >, <=, >= comparison between different size types, it will

promote to the larger type.

35

Expanding Bit Representation
unsigned short s = 32772;
// short is a 16-bit format, so s = 1000 0000 0000 0100b

unsigned int i = s;
// conversion to 32-bit int, so i = 0000 0000 0000 0000 1000 0000 0000 0100b

36

Expanding Bit Representation
unsigned short s = 32772;
// short is a 16-bit format, so s = 1000 0000 0000 0100b

unsigned int i = s;
// conversion to 32-bit int, so i = 0000 0000 0000 0000 1000 0000 0000 0100b

— or —

short s = -4;
// short is a 16-bit format, so s = 1111 1111 1111 1100b

int i = s;
// conversion to 32-bit int, so i = 1111 1111 1111 1111 1111 1111 1111 1100b

37

Truncating Bit Representation
If we want to reduce the bit size of a number, C truncates the representation
and discards the more significant bits.

What happens here? Let's look at the bits in x (a 32-bit int), 53191:
0000 0000 0000 0000 1100 1111 1100 0111
When we cast x to a short, it only has 16-bits, and C truncates the number:
1100 1111 1100 0111
This is -12345! And when we cast sx back an int, we sign-extend the number.
1111 1111 1111 1111 1100 1111 1100 0111 // still -12345

int x = 53191;
short sx = x;
int y = sx;

38

Truncating Bit Representation
If we want to reduce the bit size of a number, C truncates the representation
and discards the more significant bits.

What happens here? Let's look at the bits in x (a 32-bit int), -3:
1111 1111 1111 1111 1111 1111 1111 1101
When we cast x to a short, it only has 16-bits, and C truncates the number:
1111 1111 1111 1101
This is -3! If the number does fit, it will convert fine. y looks like this:
1111 1111 1111 1111 1111 1111 1111 1101 // still -3

int x = -3;
short sx = x;
int y = sx;

39

Truncating Bit Representation
If we want to reduce the bit size of a number, C truncates the representation
and discards the more significant bits.

What happens here? Let's look at the bits in x (a 32-bit unsigned int), 128000:
0000 0000 0000 0001 1111 0100 0000 0000
When we cast x to a short, it only has 16-bits, and C truncates the number:
1111 0100 0000 0000
This is 62464! Unsigned numbers can lose info too. Here is what y looks like:
0000 0000 0000 0000 1111 0100 0000 0000 // still 62464

unsigned int x = 128000;
unsigned short sx = x;
unsigned int y = sx;

40

sizeof
sizeof takes a variable type as a parameter and returns its size in bytes.

sizeof(type)

For example:
sizeof(char) => 1
sizeof(short) => 2
sizeof(int) => 4
sizeof(unsigned int) => 4
sizeof(long) => 8
sizeof(char *) => 8

41

Now that we understand
binary representations, how

can we manipulate them at the
bit level?

42

Plan For Today
• Recap: Integer Representations
• Truncating and Expanding
• Bitwise Operators and Masks
• Demo 1: Courses
• Break: Announcements
• Demo 2: Powers of 2
• Bit Shift Operators

43

Bitwise Operators
• You’re already familiar with many operators in C:
• Arithmetic operators: +, -, *, /, %
• Comparison operators: ==, !=, <, >, <=, >=
• Logical Operators: &&, ||, !

• Today, we’re introducing a new category of operators: bitwise operators:
• &, |, ~, ^, <<, >>

44

And (&)
AND is a binary operator. The AND of 2 bits is 1 if both bits are 1, and 0
otherwise.

a b output

0 0 0

0 1 0

1 0 0

1 1 1

output = a & b;

45

Or (|)
OR is a binary operator. The OR of 2 bits is 1 if either (or both) bits is 1.

a b output

0 0 0

0 1 1

1 0 1

1 1 1

output = a | b;

46

Not (~)
NOT is a unary operator. The NOT of a bit is 1 if the bit is 0, or 1 otherwise.

a output

0 1

1 0

output = ~a;

47

Exclusive Or (^)
Exclusive Or (XOR) is a binary operator. The XOR of 2 bits is 1 if exactly one of
the bits is 1, or 0 otherwise.

a b output

0 0 0

0 1 1

1 0 1

1 1 0

output = a ^ b;

48

An Aside: Boolean Algebra
• These operators are not unique to computers; they are part of a general area

called Boolean Algebra. These are applicable in math, hardware, computers,
and more!

49

Operators on Multiple Bits
• When these operators are applied to numbers (multiple bits), the operator is

applied to the corresponding bits in each number. For example:

0110
& 1100

0100

0110
1100
1110

0110
^ 1100

1010

~ 1100

0011

AND OR XOR NOT

Note: these are different from the logical
operators AND (&&), OR (||) and NOT (!).

50

Operators on Multiple Bits
• When these operators are applied to numbers (multiple bits), the operator is

applied to the corresponding bits in each number. For example:

0110
& 1100

0100

0110
1100
1110

0110
^ 1100

1010

~ 1100

0011

AND OR XOR NOT

This is different from logical
AND (&&). The logical AND
returns true if both are
nonzero, or false otherwise.

51

Operators on Multiple Bits
• When these operators are applied to numbers (multiple bits), the operator is

applied to the corresponding bits in each number. For example:

0110
& 1100

0100

0110
1100
1110

0110
^ 1100

1010

~ 1100

0011

AND OR XOR NOT

This is different from logical
NOT (!). The logical NOT
returns true if this is zero, and
false otherwise.

52

Bit Vectors and Sets
• We can use bit vectors (ordered collections of bits) to represent finite sets, and

perform functions such as union, intersection, and complement.
• Example: we can represent current courses taken using a char.

0 0 1 0 0 0 1 1

CS
10
6A

CS
10
6B

CS
10
6X

CS
10
7

CS
11
0

CS
10
3

CS
10
9

CS
16
1

53

Bit Vectors and Sets

• How do we find the union of two sets of courses taken? Use OR:

00100011
01100001
01100011

0 0 1 0 0 0 1 1

CS
10
6A

CS
10
6B

CS
10
6X

CS
10
7

CS
11
0

CS
10
3

CS
10
9

CS
16
1

54

Bit Vectors and Sets

• How do we find the intersection of two sets of courses taken? Use AND:

00100011
& 01100001

00100001

0 0 1 0 0 0 1 1

CS
10
6A

CS
10
6B

CS
10
6X

CS
10
7

CS
11
0

CS
10
3

CS
10
9

CS
16
1

55

Bit Masking
• We will frequently want to manipulate or isolate out specific bits in a larger

collection of bits. A bitmask is a constructed bit pattern that we can use, along
with bit operators, to do this.
• Example: how do we update our bit vector to indicate we’ve taken CS107?

00100011
00001000
00101011

0 0 1 0 0 0 1 1

CS
10
6A

CS
10
6B

CS
10
6X

CS
10
7

CS
11
0

CS
10
3

CS
10
9

CS
16
1

56

Bit Masking
#define CS106A 0x1 /* 0000 0001 */
#define CS106B 0x2 /* 0000 0010 */
#define CS106X 0x4 /* 0000 0100 */
#define CS107 0x8 /* 0000 1000 */
#define CS110 0x10 /* 0001 0000 */
#define CS103 0x20 /* 0010 0000 */
#define CS109 0x40 /* 0100 0000 */
#define CS161 0x80 /* 1000 0000 */

char myClasses = ...;
myClasses = myClasses | CS107; // Add CS107

57

Bit Masking
#define CS106A 0x1 /* 0000 0001 */
#define CS106B 0x2 /* 0000 0010 */
#define CS106X 0x4 /* 0000 0100 */
#define CS107 0x8 /* 0000 1000 */
#define CS110 0x10 /* 0001 0000 */
#define CS103 0x20 /* 0010 0000 */
#define CS109 0x40 /* 0100 0000 */
#define CS161 0x80 /* 1000 0000 */

char myClasses = ...;
myClasses |= CS107; // Add CS107

58

Bit Masking
• Example: how do we update our bit vector to indicate we’ve not taken CS103?

00100011
& 11011111

00000011

0 0 1 0 0 0 1 1

CS
10
6A

CS
10
6B

CS
10
6X

CS
10
7

CS
11
0

CS
10
3

CS
10
9

CS
16
1

char myClasses = ...;
myClasses = myClasses & ~CS103; // Remove CS103

59

Bit Masking
• Example: how do we update our bit vector to indicate we’ve not taken CS103?

00100011
& 11011111

00000011

0 0 1 0 0 0 1 1

CS
10
6A

CS
10
6B

CS
10
6X

CS
10
7

CS
11
0

CS
10
3

CS
10
9

CS
16
1

char myClasses = ...;
myClasses &= ~CS103; // Remove CS103

60

Bit Masking
• Example: how do we check if we’ve taken CS106B?

00100011
& 00000010

00000010

0 0 1 0 0 0 1 1

CS
10
6A

CS
10
6B

CS
10
6X

CS
10
7

CS
11
0

CS
10
3

CS
10
9

CS
16
1

char myClasses = ...;
if (myClasses & CS106B) {...

// taken CS106B!

61

Bit Masking
• Example: how do we check if we’ve not taken CS107?

0 0 1 0 0 0 1 1

CS
10
6A

CS
10
6B

CS
10
6X

CS
10
7

CS
11
0

CS
10
3

CS
10
9

CS
16
1

char myClasses = ...;
if ((myClasses & CS107) ^ CS107) {...

// not taken CS107!

00100011
& 00001000

00000000

00000000
^ 00001000

00001000

62

Bit Masking
• Example: how do we check if we’ve not taken CS107?

0 0 1 0 0 0 1 1

CS
10
6A

CS
10
6B

CS
10
6X

CS
10
7

CS
11
0

CS
10
3

CS
10
9

CS
16
1

char myClasses = ...;
if (!(myClasses & CS107)) {...

// not taken CS107!

00100011
& 00001000

00000000

63

Demo: Bitmasks and GDB

64

Bit Masking
• Bit masking is also useful for integer representations as well. For instance, we

might want to check the value of the most-significant bit, or just one of the
middle bytes.

• Example: If I have a 32-bit integer j, what operation should I perform if I want
to get just the lowest byte in j?

int j = ...;
int k = j & 0xff; // mask to get just lowest byte

65

Practice: Bit Masking
• Practice 1: write an expression that, given a 32-bit integer j, sets its least-

significant byte to all 1s, but preserves all other bytes.

• Practice 2: write an expression that, given a 32-bit integer j, flips
(“complements”) all but the least-significant byte, and preserves all other
bytes.

66

Practice: Bit Masking
• Practice 1: write an expression that, given a 32-bit integer j, sets its least-

significant byte to all 1s, but preserves all other bytes.
j | 0xff

• Practice 2: write an expression that, given a 32-bit integer j, flips
(“complements”) all but the least-significant byte, and preserves all other
bytes.

j ^ ~0xff

67

Plan For Today
• Recap: Integer Representations
• Truncating and Expanding
• Bitwise Boolean Operators and Masks
• Demo 1: Courses
• Break: Announcements
• Demo 2: Powers of 2
• Bit Shift Operators

68

Announcements
• Please send us any OAE letters or athletics conflicts as soon as possible.
• Assignment 0 deadline tonight at 11:59PM PST
• Assignment 1 (Bit operations!) goes out tonight at Assignment 0 deadline
• Saturated arithmetic
• Cell Automata
• Unicode and UTF-8

• Lab 1 this week!

69

Powers of 2

Without using loops, how can we detect if a
binary number is a power of 2? What is
special about its binary representation and
how can we leverage that?

70

Demo: Powers of 2

71

Plan For Today
• Recap: Integer Representations
• Truncating and Expanding
• Bitwise Boolean Operators and Masks
• Demo 1: Courses
• Break: Announcements
• Demo 2: Powers of 2
• Bit Shift Operators

72

Left Shift (<<)
The LEFT SHIFT operator shifts a bit pattern a certain number of positions to the
left. New lower order bits are filled in with 0s, and bits shifted off of the end are
lost.

x << k; // shifts x to the left by k bits

8-bit examples:
00110111 << 2 results in 11011100
01100011 << 4 results in 00110000
10010101 << 4 results in 01010000

73

Right Shift (>>)
The RIGHT SHIFT operator shifts a bit pattern a certain number of positions to
the right. Bits shifted off of the end are lost.

x >> k; // shifts x to the right by k bits

Question: how should we fill in new higher-order bits?
Idea: let’s follow left-shift and fill with 0s.

short x = 2; // 0000 0000 0000 0010
x >> 1; // 0000 0000 0000 0001
printf("%d\n", x); // 1

74

Right Shift (>>)
The RIGHT SHIFT operator shifts a bit pattern a certain number of positions to
the right. Bits shifted off of the end are lost.

x >> k; // shifts x to the right by k bits

Question: how should we fill in new higher-order bits?
Idea: let’s follow left-shift and fill with 0s.

short x = -2; // 1111 1111 1111 1110
x >> 1; // 0111 1111 1111 1111
printf("%d\n", x); // 32767!

75

Right Shift (>>)
The RIGHT SHIFT operator shifts a bit pattern a certain number of positions to
the right. Bits shifted off of the end are lost.

x >> k; // shifts x to the right by k bits

Question: how should we fill in new higher-order bits?
Problem: always filling with zeros means we may change the sign bit.
Solution: let’s fill with the sign bit!

76

Right Shift (>>)
The RIGHT SHIFT operator shifts a bit pattern a certain number of positions to
the right. Bits shifted off of the end are lost.

x >> k; // shifts x to the right by k bits

Question: how should we fill in new higher-order bits?
Solution: let’s fill with the sign bit!

short x = 2; // 0000 0000 0000 0010
x >> 1; // 0000 0000 0000 0001
printf("%d\n", x); // 1

77

Right Shift (>>)
The RIGHT SHIFT operator shifts a bit pattern a certain number of positions to
the right. Bits shifted off of the end are lost.

x >> k; // shifts x to the right by k bits

Question: how should we fill in new higher-order bits?
Solution: let’s fill with the sign bit!

short x = -2; // 1111 1111 1111 1110
x >> 1; // 1111 1111 1111 1111
printf("%d\n", x); // -1!

78

Right Shift (>>)
There are two kinds of right shifts, depending on the value and type you are
shifting:
• Logical Right Shift: fill new high-order bits with 0s.
• Arithmetic Right Shift: fill new high-order bits with the most-significant bit.

Unsigned numbers are right-shifted using Logical Right Shift.
Signed numbers are right-shifted using Arithmetic Right Shift.

This way, the sign of the number (if applicable) is preserved!

79

Shift Operation Pitfalls
1. Technically, the C standard does not precisely define whether a right shift for

signed integers is logical or arithmetic. However, almost all
compilers/machines use arithmetic, and you can most likely assume this.

2. Operator precedence can be tricky! For example:

1<<2 + 3<<4 means 1 << (2+3) << 4 because addition and
subtraction have higher precedence than shifts! Always use parentheses
to be sure:

(1<<2) + (3<<4)

80

Bit Operator Pitfalls
• The default type of a number literal in your code is an int.
• Let’s say you want a long with the index-32 bit as 1:

long num = 1 << 32;

• This doesn’t work! 1 is by default an int, and you can’t shift an int by 32
because it only has 32 bits. You must specify that you want 1 to be a long.

long num = 1L << 32;

81

Recap
• Recap: Integer Representations
• Truncating and Expanding
• Bitwise Boolean Operators and Masks
• Demo 1: Courses
• Break: Announcements
• Demo 2: Powers of 2
• Bit Shift Operators

Next time: How can a computer represent and manipulate more complex data
like text?

82

Extra Slides

83

Demo: Absolute Value

