CS107, Lecture 3
Bits and Bytes; Bitwise Operators

reading:
Bryant & O’Hallaron, Ch. 2.1
Plan For Today

• **Recap**: Integer Representations
• Truncating and Expanding
• Bitwise Operators and Masks
• **Demo 1**: Courses
• **Break**: Announcements
• **Demo 2**: Powers of 2
• Bit Shift Operators
Plan For Today

• Recap: Integer Representations
• Truncating and Expanding
• Bitwise Operators and Masks
• Demo 1: Courses
• Break: Announcements
• Demo 2: Powers of 2
• Bit Shift Operators
Base 2

1 0 1 1

\[2^3 \quad 2^2 \quad 2^1 \quad 2^0 \]
Hexadecimal

<table>
<thead>
<tr>
<th>Hex digit</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decimal</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Binary</td>
<td>0000</td>
<td>0001</td>
<td>0010</td>
<td>0011</td>
<td>0100</td>
<td>0101</td>
<td>0110</td>
<td>0111</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hex digit</th>
<th>8</th>
<th>9</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decimal</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>Binary</td>
<td>1000</td>
<td>1001</td>
<td>1010</td>
<td>1011</td>
<td>1100</td>
<td>1101</td>
<td>1110</td>
<td>1111</td>
</tr>
</tbody>
</table>
Unsigned Integers

4-bit unsigned integer representation

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
Signed Integers: Two’s Complement

• In **two’s complement**, we represent a positive number as its **itself**, and its negative equivalent as the **two’s complement of itself**.

• The **two’s complement** of a number is the binary digits inverted, plus 1.

• This works to convert from positive to negative, **and back** from negative to positive!
Signed Integers: Two’s Complement

- **Con:** more difficult to represent, and difficult to convert to/from decimal and between positive and negative.
- **Pro:** only 1 representation for 0!
- **Pro:** all bits are used to represent as many numbers as possible
- **Pro:** it turns out that the most significant bit *still indicates the sign* of a number.
- **Pro:** arithmetic is easy: we just add!
Overflow and Underflow

• If you exceed the **maximum** value of your bit representation, you *wrap around* or *overflow* back to the **smallest** bit representation.

 \[\text{0b1111} + \text{0b1} = \text{0b0000} \]

• If you go below the **minimum** value of your bit representation, you *wrap around* or *underflow* back to the **largest** bit representation.

 \[\text{0b0000} - \text{0b1} = \text{0b1111} \]
Unsigned Integers

$\approx +4 \text{billion}$

Discontinuity means overflow possible here

Increasing positive numbers

More increasing positive numbers
Signed Numbers

Discontinuity means overflow possible here.

Increasing positive numbers

Negative numbers becoming less negative (i.e. increasing)

≈-2billion ≈+2billion
Aside: ASCII

• ASCII is an encoding from common characters (letters, symbols, etc.) to bit representations (chars).
 • E.g. 'A' is 0x41

• Neat property: all uppercase letters, and all lowercase letters, are sequentially represented!
 • E.g. 'B' is 0x42
There are 3 placeholders for 32-bit integers that we can use:
 • %d: signed 32-bit int
 • %u: unsigned 32-bit int
 • %x: hex 32-bit int

As long as the value is a 32-bit type, printf will treat it according to the placeholder!
What happens at the byte level when we cast between variable types? The bytes remain the same! This means they may be interpreted differently depending on the type.

```c
int v = -12345;
unsigned int uv = v;
printf("v = %d, uv = %u\n", v, uv);
```

This prints out: "v = -12345, uv = 4294954951". Why?
Casting

• What happens at the byte level when we cast between variable types? The bytes remain the same! This means they may be interpreted differently depending on the type.

```c
int v = -12345;
unsigned int uv = v;
printf("v = %d, uv = %u\n", v, uv);
```

-12345 in binary is \texttt{1111 1111 1111 1111 1100 1111 1100 0111}.
If we treat this binary representation as a positive number, it’s huge!
Casting

4-bit two's complement signed integer representation

4-bit unsigned integer representation
Be careful when comparing signed and unsigned integers. **C will implicitly cast** the signed argument to unsigned, and then performs the operation assuming both numbers are non-negative.

<table>
<thead>
<tr>
<th>Expression</th>
<th>Type</th>
<th>Evaluation</th>
<th>Correct?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 == 0U</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1 < 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1 < 0U</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2147483647 > -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2147483647 - 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2147483647U > -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2147483647 - 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2147483647 ></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(int)2147483648U</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1 > -2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(unsigned)-1 > -2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Be careful when comparing signed and unsigned integers. C will implicitly cast the signed argument to unsigned, and then performs the operation assuming both numbers are non-negative.

<table>
<thead>
<tr>
<th>Expression</th>
<th>Type</th>
<th>Evaluation</th>
<th>Correct?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 == 0U</td>
<td>Unsigned</td>
<td>true</td>
<td>yes</td>
</tr>
<tr>
<td>-1 < 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1 < 0U</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2147483647 > -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2147483647 - 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2147483647U > -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2147483647 - 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2147483647 > (int)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2147483648U</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1 > -2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(unsigned)-1 > -2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Be careful when comparing signed and unsigned integers. **C will implicitly cast** the signed argument to unsigned, and then performs the operation assuming both numbers are non-negative.

<table>
<thead>
<tr>
<th>Expression</th>
<th>Type</th>
<th>Evaluation</th>
<th>Correct?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 == 0U</td>
<td>Unsigned</td>
<td>true</td>
<td>yes</td>
</tr>
<tr>
<td>-1 < 0</td>
<td>Signed</td>
<td>true</td>
<td>yes</td>
</tr>
<tr>
<td>-1 < 0U</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2147483647 > -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2147483647 - 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2147483647U > -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2147483647 - 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2147483647 > (int)2147483648U</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1 > -2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(unsigned)-1 > -2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Comparisons Between Different Types

Be careful when comparing signed and unsigned integers. C will implicitly cast the signed argument to unsigned, and then performs the operation assuming both numbers are non-negative.

<table>
<thead>
<tr>
<th>Expression</th>
<th>Type</th>
<th>Evaluation</th>
<th>Correct?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 == 0U</td>
<td>Unsigned</td>
<td>true</td>
<td>yes</td>
</tr>
<tr>
<td>-1 < 0</td>
<td>Signed</td>
<td>true</td>
<td>yes</td>
</tr>
<tr>
<td>-1 < 0U</td>
<td>Unsigned</td>
<td>false</td>
<td>no!</td>
</tr>
<tr>
<td>2147483647 > -1</td>
<td>Unsigned</td>
<td>false</td>
<td>no!</td>
</tr>
<tr>
<td>2147483647U > -1</td>
<td>Unsigned</td>
<td>true</td>
<td>yes</td>
</tr>
<tr>
<td>2147483647U > (int)2147483648U</td>
<td>Unsigned</td>
<td>true</td>
<td>yes</td>
</tr>
<tr>
<td>-1 > -2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(unsigned)-1 > -2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Comparisons Between Different Types

Be careful when comparing signed and unsigned integers. **C will implicitly cast** the signed argument to unsigned, and then performs the operation assuming both numbers are non-negative.

<table>
<thead>
<tr>
<th>Expression</th>
<th>Type</th>
<th>Evaluation</th>
<th>Correct?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 == 0U</td>
<td>Unsigned</td>
<td>true</td>
<td>yes</td>
</tr>
<tr>
<td>-1 < 0</td>
<td>Signed</td>
<td>true</td>
<td>yes</td>
</tr>
<tr>
<td>-1 < 0U</td>
<td>Unsigned</td>
<td>false</td>
<td>no!</td>
</tr>
<tr>
<td>2147483647 > -</td>
<td>Signed</td>
<td>true</td>
<td>yes</td>
</tr>
<tr>
<td>2147483647 - 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2147483647U > -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(int)2147483648U</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1 > -2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(unsigned)-1 > -2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Comparisons Between Different Types

Be careful when comparing signed and unsigned integers. C will implicitly cast the signed argument to unsigned, and then performs the operation assuming both numbers are non-negative.

<table>
<thead>
<tr>
<th>Expression</th>
<th>Type</th>
<th>Evaluation</th>
<th>Correct?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 == 0U</td>
<td>Unsigned</td>
<td>true</td>
<td>yes</td>
</tr>
<tr>
<td>-1 < 0</td>
<td>Signed</td>
<td>true</td>
<td>yes</td>
</tr>
<tr>
<td>-1 < 0U</td>
<td>Unsigned</td>
<td>false</td>
<td>no!</td>
</tr>
<tr>
<td>2147483647 > -2147483647 - 1</td>
<td>Signed</td>
<td>true</td>
<td>yes</td>
</tr>
<tr>
<td>2147483647U > -2147483647 - 1</td>
<td>Unsigned</td>
<td>false</td>
<td>no!</td>
</tr>
<tr>
<td>2147483647 > (int)2147483648U</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1 > -2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(unsigned)-1 > -2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Comparisons Between Different Types

Be careful when comparing signed and unsigned integers. C will implicitly cast the signed argument to unsigned, and then performs the operation assuming both numbers are non-negative.

<table>
<thead>
<tr>
<th>Expression</th>
<th>Type</th>
<th>Evaluation</th>
<th>Correct?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 == 0U</td>
<td>Unsigned</td>
<td>true</td>
<td>yes</td>
</tr>
<tr>
<td>-1 < 0</td>
<td>Signed</td>
<td>true</td>
<td>yes</td>
</tr>
<tr>
<td>-1 < 0U</td>
<td>Unsigned</td>
<td>false</td>
<td>no!</td>
</tr>
<tr>
<td>2147483647 > -2147483647 - 1</td>
<td>Signed</td>
<td>true</td>
<td>yes</td>
</tr>
<tr>
<td>2147483647U > -2147483647 - 1</td>
<td>Unsigned</td>
<td>false</td>
<td>no!</td>
</tr>
<tr>
<td>2147483647 > (int)2147483648U</td>
<td>Signed</td>
<td>true</td>
<td>no!</td>
</tr>
<tr>
<td>-1 > -2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(unsigned)-1 > -2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Comparisons Between Different Types

Be careful when comparing signed and unsigned integers. **C will implicitly cast** the signed argument to unsigned, and then performs the operation assuming both numbers are non-negative.

<table>
<thead>
<tr>
<th>Expression</th>
<th>Type</th>
<th>Evaluation</th>
<th>Correct?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 == 0U</td>
<td>Unsigned</td>
<td>true</td>
<td>yes</td>
</tr>
<tr>
<td>-1 < 0</td>
<td>Signed</td>
<td>true</td>
<td>yes</td>
</tr>
<tr>
<td>-1 < 0U</td>
<td>Unsigned</td>
<td>false</td>
<td>no!</td>
</tr>
<tr>
<td>2147483647 > -2147483647 - 1</td>
<td>Signed</td>
<td>true</td>
<td>yes</td>
</tr>
<tr>
<td>2147483647U > -2147483647 - 1</td>
<td>Unsigned</td>
<td>false</td>
<td>no!</td>
</tr>
<tr>
<td>2147483647 > (int)2147483648U</td>
<td>Signed</td>
<td>true</td>
<td>no!</td>
</tr>
<tr>
<td>-1 > -2</td>
<td>Signed</td>
<td>true</td>
<td>yes</td>
</tr>
<tr>
<td>(unsigned)-1 > -2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Comparisons Between Different Types

Be careful when comparing signed and unsigned integers. C will implicitly cast the signed argument to unsigned, and then performs the operation assuming both numbers are non-negative.

<table>
<thead>
<tr>
<th>Expression</th>
<th>Type</th>
<th>Evaluation</th>
<th>Correct?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 == 0U</td>
<td>Unsigned</td>
<td>true</td>
<td>yes</td>
</tr>
<tr>
<td>-1 < 0</td>
<td>Signed</td>
<td>true</td>
<td>yes</td>
</tr>
<tr>
<td>-1 < 0U</td>
<td>Unsigned</td>
<td>false</td>
<td>no!</td>
</tr>
<tr>
<td>2147483647 > -2147483647 - 1</td>
<td>Signed</td>
<td>true</td>
<td>yes</td>
</tr>
<tr>
<td>2147483647U > -2147483647 - 1</td>
<td>Unsigned</td>
<td>false</td>
<td>no!</td>
</tr>
<tr>
<td>2147483647 > (int)2147483648U</td>
<td>Signed</td>
<td>true</td>
<td>no!</td>
</tr>
<tr>
<td>-1 > -2</td>
<td>Signed</td>
<td>true</td>
<td>yes</td>
</tr>
<tr>
<td>(unsigned)-1 > -2</td>
<td>Unsigned</td>
<td>true</td>
<td>yes</td>
</tr>
</tbody>
</table>
Comparisons Between Different Types

Which of the following statements are true? (assume that variables are set to values that place them in the spots shown)

1. $s_3 > u_3$
2. $u_2 > u_4$
3. $s_2 > s_4$
4. $s_1 > s_2$
5. $u_1 > u_2$
6. $s_1 > u_3$
Comparisons Between Different Types

Which of the following statements are true? (assume that variables are set to values that place them in the spots shown)

1. $s_3 > u_3$ - true
2. $u_2 > u_4$
3. $s_2 > s_4$
4. $s_1 > s_2$
5. $u_1 > u_2$
6. $s_1 > u_3$
Comparisons Between Different Types

Which of the following statements are true? (assume that variables are set to values that place them in the spots shown)

1. $s_3 > u_3$ - true
2. $u_2 > u_4$ - true
3. $s_2 > s_4$
4. $s_1 > s_2$
5. $u_1 > u_2$
6. $s_1 > u_3$
Comparisons Between Different Types

Which of the following statements are true? (assume that variables are set to values that place them in the spots shown)

1. $s_3 > u_3$ - true
2. $u_2 > u_4$ - true
3. $s_2 > s_4$ - false
4. $s_1 > s_2$
5. $u_1 > u_2$
6. $s_1 > u_3$
Comparisons Between Different Types

Which of the following statements are true? (assume that variables are set to values that place them in the spots shown)

1. $s_3 > u_3$ - true
2. $u_2 > u_4$ - true
3. $s_2 > s_4$ - false
4. $s_1 > s_2$ - true
5. $u_1 > u_2$
6. $s_1 > u_3$
Comparisons Between Different Types

Which of the following statements are true? (assume that variables are set to values that place them in the spots shown)

1. s3 > u3 - true
2. u2 > u4 - true
3. s2 > s4 - false
4. s1 > s2 - true
5. u1 > u2 - true
6. s1 > u3
Comparisons Between Different Types

Which of the following statements are true? (assume that variables are set to values that place them in the spots shown)

1. $s_3 > u_3$ - true
2. $u_2 > u_4$ - true
3. $s_2 > s_4$ - false
4. $s_1 > s_2$ - true
5. $u_1 > u_2$ - true
6. $s_1 > u_3$ - true
Plan For Today

• Recap: Integer Representations
• Truncating and Expanding
• Bitwise Operators and Masks
• Demo 1: Courses
• Break: Announcements
• Demo 2: Powers of 2
• Bit Shift Operators
Expanding Bit Representations

• Sometimes, we want to convert between two integers of different sizes (e.g. short to int, or int to long).

• We might not be able to convert from a bigger data type to a smaller data type, but we do want to always be able to convert from a smaller data type to a bigger data type.

• For **unsigned** values, we can add *leading zeros* to the representation (“zero extension”)

• For **signed** values, we can *repeat the sign of the value* for new digits (“sign extension”)

• Note: when doing <, >, <=, >= comparison between different size types, it will *promote to the larger type.*
unsigned short s = 32772;
// short is a 16-bit format, so
s = 1000 0000 0000 0100b

unsigned int i = s;
// conversion to 32-bit int, so
i = 0000 0000 0000 0000 1000 0000 0000 0100b
Expanding Bit Representation

unsigned short s = 32772;
// short is a 16-bit format, so
s = 1000 0000 0000 0100b

unsigned int i = s;
// conversion to 32-bit int, so
i = 0000 0000 0000 0000 1000 0000 0000 0100b

— or —

short s = -4;
// short is a 16-bit format, so
s = 1111 1111 1111 1100b

int i = s;
// conversion to 32-bit int, so
i = 1111 1111 1111 1111 1111 1111 1111 1100b
Truncating Bit Representation

If we want to **reduce** the bit size of a number, C **truncates** the representation and discards the *more significant bits*.

```c
int x = 53191;
short sx = x;
int y = sx;
```

What happens here? Let's look at the bits in x (a 32-bit int), 53191:

```
0000 0000 0000 0000 1100 1111 1100 0111
```

When we cast x to a short, it only has 16-bits, and C **truncates** the number:

```
1100 1111 1100 0111
```

This is -12345! And when we cast sx back an int, we sign-extend the number.

```
1111 1111 1111 1111 1100 1111 1100 0111  // still -12345
```
If we want to **reduce** the bit size of a number, C *truncates* the representation and discards the *more significant bits*.

```c
int x = -3;
short sx = x;
int y = sx;
```

What happens here? Let's look at the bits in `x` (a 32-bit int), -3:

```
1111 1111 1111 1111 1111 1111 1111 1101
```

When we cast `x` to a short, it only has 16-bits, and C *truncates* the number:

```
1111 1111 1111 1101
```

This is -3! **If the number does fit, it will convert fine.** `y` looks like this:

```
1111 1111 1111 1101 // still -3
```
If we want to **reduce** the bit size of a number, C *truncates* the representation and discards the *more significant bits*.

```c
unsigned int x = 128000;
unsigned short sx = x;
unsigned int y = sx;
```

What happens here? Let's look at the bits in x (a 32-bit unsigned int), 128000:

```
0000 0000 0000 0001 1111 0100 0000 0000
```

When we cast x to a short, it only has 16-bits, and C *truncates* the number:

```
1111 0100 0000 0000
```

This is 62464! **Unsigned numbers can lose info too.** Here is what y looks like:

```
0000 0000 0000 0000 1111 0100 0000 0000 // still 62464
```
`sizeof` takes a variable type as a parameter and returns its size in bytes.

`sizeof(type)`

For example:

- `sizeof(char) => 1`
- `sizeof(short) => 2`
- `sizeof(int) => 4`
- `sizeof(unsigned int) => 4`
- `sizeof(long) => 8`
- `sizeof(char *) => 8`
Now that we understand binary representations, how can we manipulate them at the bit level?
Plan For Today

• Recap: Integer Representations
• Truncating and Expanding
• Bitwise Operators and Masks
• Demo 1: Courses
• Break: Announcements
• Demo 2: Powers of 2
• Bit Shift Operators
Bitwise Operators

• You’re already familiar with many operators in C:
 • **Arithmetic operators**: +, -, *, /, %
 • **Comparison operators**: ==, !_, <, >, <=, >=
 • **Logical Operators**: &&, | |, !

• Today, we’re introducing a new category of operators: **bitwise operators**:
 • &, |, ~, ^, <<, >>
AND is a binary operator. The AND of 2 bits is 1 if both bits are 1, and 0 otherwise.

output = a & b;

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
OR is a binary operator. The OR of 2 bits is 1 if either (or both) bits is 1.

\[
\text{output} = a \mid b;
\]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
NOT is a unary operator. The NOT of a bit is 1 if the bit is 0, or 1 otherwise.

\[\text{output} = \sim a; \]

<table>
<thead>
<tr>
<th>a</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Exclusive Or (XOR) is a binary operator. The XOR of 2 bits is 1 if exactly one of the bits is 1, or 0 otherwise.

output = a ^ b;

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
An Aside: Boolean Algebra

• These operators are not unique to computers; they are part of a general area called **Boolean Algebra**. These are applicable in math, hardware, computers, and more!
Operators on Multiple Bits

• When these operators are applied to numbers (multiple bits), the operator is applied to the corresponding bits in each number. For example:

<table>
<thead>
<tr>
<th>AND</th>
<th>OR</th>
<th>XOR</th>
<th>NOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0110 & 1100 ---- 0100</td>
<td>0110</td>
<td>0110 ^ 1100 ---- 1010</td>
<td>~ 1100 ---- 0011</td>
</tr>
<tr>
<td></td>
<td>1100</td>
<td>1110</td>
<td>1100</td>
</tr>
</tbody>
</table>

Note: these are different from the logical operators AND (&&), OR (||) and NOT (!).
Operators on Multiple Bits

- When these operators are applied to numbers (multiple bits), the operator is applied to the corresponding bits in each number. For example:

<table>
<thead>
<tr>
<th>Operator</th>
<th>Example 1</th>
<th>Example 2</th>
<th>Example 3</th>
<th>Example 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>AND</td>
<td>0110 & 1100</td>
<td>0110 & 1100</td>
<td>0110 & 1100</td>
<td>0110 & 1100</td>
</tr>
<tr>
<td>OR</td>
<td>0110</td>
<td>0110</td>
<td>0110</td>
<td>0110</td>
</tr>
<tr>
<td>XOR</td>
<td>0110 ^ 1100</td>
<td>0110 ^ 1100</td>
<td>0110 ^ 1100</td>
<td>0110 ^ 1100</td>
</tr>
<tr>
<td>NOT</td>
<td>~ 1100</td>
<td>~ 1100</td>
<td>~ 1100</td>
<td>~ 1100</td>
</tr>
</tbody>
</table>

This is different from logical AND (&&). The logical AND returns true if both are nonzero, or false otherwise.
Operators on Multiple Bits

- When these operators are applied to numbers (multiple bits), the operator is applied to the corresponding bits in each number. For example:

<table>
<thead>
<tr>
<th>AND</th>
<th>OR</th>
<th>XOR</th>
<th>NOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0110 & 1100</td>
<td>0110</td>
<td>0110 ^ 1100</td>
<td>~ 1100</td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>0100</td>
<td>1110</td>
<td>1010</td>
<td>0011</td>
</tr>
</tbody>
</table>

This is different from logical NOT (!). The logical NOT returns true if this is zero, and false otherwise.
Bit Vectors and Sets

- We can use bit vectors (ordered collections of bits) to represent finite sets, and perform functions such as union, intersection, and complement.

- **Example:** we can represent current courses taken using a `char`.

```
0 0 1 0 0 0 1 1
CS161 CS109 CS103 CS110 CS107 CS106X CS106B CS106A
```
• How do we find the union of two sets of courses taken? Use OR:

```
  00100011
| 01100001
------
01100011
```
• How do we find the intersection of two sets of courses taken? Use AND:

\[
00100011 \\
\& \quad 01100001 \\
\hline \\
00100001
\]

- CS106A
- CS106B
- CS107
- CS110
- CS109
- CS103
- CS161
- CS106X

\[
\begin{array}{c|c|c|c|c|c|c|c|c}
CS161 & CS109 & CS103 & CS110 & CS107 & CS106X & CS106B & CS106A \\
\hline
0 & 0 & 1 & 0 & 0 & 0 & 1 & 1
\end{array}
\]
Bit Masking

• We will frequently want to manipulate or isolate out specific bits in a larger collection of bits. A bitmask is a constructed bit pattern that we can use, along with bit operators, to do this.

• Example: how do we update our bit vector to indicate we’ve taken CS107?

```
0 0 1 0 0 0 0 1 1
```

00100011
|
00001000

00101011
Bit Masking

```c
#define CS106A 0x1  /* 0000 0001 */
#define CS106B 0x2  /* 0000 0010 */
#define CS106X 0x4  /* 0000 0100 */
#define CS107 0x8   /* 0000 1000 */
#define CS110 0x10  /* 0001 0000 */
#define CS103 0x20  /* 0010 0000 */
#define CS109 0x40  /* 0100 0000 */
#define CS161 0x80  /* 1000 0000 */

char myClasses = ...;
myClasses = myClasses | CS107;  // Add CS107
```
Bit Masking

```
#define CS106A 0x1    /* 0000 0001 */
#define CS106B 0x2    /* 0000 0010 */
#define CS106X 0x4    /* 0000 0100 */
#define CS107  0x8    /* 0000 1000 */
#define CS110  0x10   /* 0001 0000 */
#define CS103  0x20   /* 0010 0000 */
#define CS109  0x40   /* 0100 0000 */
#define CS161  0x80   /* 1000 0000 */

char myClasses = ...;
myClasses |= CS107;    // Add CS107
```
Bit Masking

- **Example:** how do we update our bit vector to indicate we’ve *not* taken CS103?

```
char myClasses = ...;
myClasses = myClasses & ~CS103;  // Remove CS103
```
Bit Masking

- **Example:** how do we update our bit vector to indicate we’ve *not* taken CS103?

```
char myClasses = ...;
myClasses &= ~CS103;    // Remove CS103
```
Bit Masking

- **Example:** how do we check if we’ve taken CS106B?

<table>
<thead>
<tr>
<th></th>
<th>CS161</th>
<th>CS109</th>
<th>CS103</th>
<th>CS110</th>
<th>CS107</th>
<th>CS106X</th>
<th>CS106B</th>
<th>CS106A</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

```
00100011
& 00000010
---
00000010
```

```c
char myClasses = ...;
if (myClasses & CS106B) {...
     // taken CS106B!
```
Bit Masking

• Example: how do we check if we’ve not taken CS107?

```
char myClasses = ...;
if ((myClasses & CS107) ^ CS107) {...
  // not taken CS107!
```
Bit Masking

Example: how do we check if we’ve *not* taken CS107?

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS161</td>
</tr>
<tr>
<td>CS109</td>
</tr>
<tr>
<td>CS103</td>
</tr>
<tr>
<td>CS110</td>
</tr>
<tr>
<td>CS107</td>
</tr>
<tr>
<td>CS106X</td>
</tr>
<tr>
<td>CS106B</td>
</tr>
<tr>
<td>CS106A</td>
</tr>
</tbody>
</table>

```plaintext
char myClasses = ...;
if (!(myClasses & CS107)) {...
    // not taken CS107!
```
Demo: Bitmasks and GDB
Bit Masking

• Bit masking is also useful for integer representations as well. For instance, we might want to check the value of the most-significant bit, or just one of the middle bytes.

• Example: If I have a 32-bit integer \(j \), what operation should I perform if I want to get \textit{just the lowest byte} in \(j \)?

\[
\text{int } j = \ldots; \\
\text{int } k = j \& 0xff; \quad \text{// mask to get just lowest byte}
\]
Practice: Bit Masking

• **Practice 1:** write an expression that, given a 32-bit integer j, sets its least-significant byte to all 1s, but preserves all other bytes.

• **Practice 2:** write an expression that, given a 32-bit integer j, flips ("complements") all but the least-significant byte, and preserves all other bytes.
Practice: Bit Masking

• **Practice 1:** write an expression that, given a 32-bit integer j, sets its least-significant byte to all 1s, but preserves all other bytes.

 $$j \mid 0xff$$

• **Practice 2:** write an expression that, given a 32-bit integer j, flips ("complements") all but the least-significant byte, and preserves all other bytes.

 $$j \ ^\wedge \ 0xff$$
Plan For Today

• Recap: Integer Representations
• Truncating and Expanding
• Bitwise Boolean Operators and Masks
• Demo 1: Courses
• Break: Announcements
• Demo 2: Powers of 2
• Bit Shift Operators
Announcements

• Please send us any OAE letters or athletics conflicts as soon as possible.
• Assignment 0 deadline tonight at 11:59PM PST
• Assignment 1 (Bit operations!) goes out tonight at Assignment 0 deadline
 • Saturated arithmetic
 • Cell Automata
 • Unicode and UTF-8
• Lab 1 this week!
Without using loops, how can we detect if a binary number is a power of 2? What is special about its binary representation and how can we leverage that?
Demo: Powers of 2
Plan For Today

- **Recap**: Integer Representations
- Truncating and Expanding
- Bitwise Boolean Operators and Masks
- **Demo 1**: Courses
- **Break**: Announcements
- **Demo 2**: Powers of 2
- **Bit Shift Operators**
The LEFT SHIFT operator shifts a bit pattern a certain number of positions to the left. New lower order bits are filled in with 0s, and bits shifted off of the end are lost.

\[
x \ll k; \quad \text{// shifts } x \text{ to the left by } k \text{ bits}
\]

8-bit examples:
- 00110111 \ll 2 results in 11011100
- 01100011 \ll 4 results in 00110000
- 10010101 \ll 4 results in 01010000
The RIGHT SHIFT operator shifts a bit pattern a certain number of positions to the right. Bits shifted off of the end are lost.

```
x >> k;  // shifts x to the right by k bits
```

Question: how should we fill in new higher-order bits?

Idea: let’s follow left-shift and fill with 0s.

```c
short x = 2;  // 0000 0000 0000 0010
x >> 1;       // 0000 0000 0000 0001
printf("%d\n", x);  // 1
```
The RIGHT SHIFT operator shifts a bit pattern a certain number of positions to the right. Bits shifted off of the end are lost.

\[x \gg k; \quad // \text{shifts } x \text{ to the right by } k \text{ bits} \]

Question: how should we fill in new higher-order bits?

Idea: let’s follow left-shift and fill with 0s.

```c
short x = -2;  // 1111 1111 1111 1110
x >>= 1;       // 0111 1111 1111 1111
printf("%d\n", x); // 32767!
```
The RIGHT SHIFT operator shifts a bit pattern a certain number of positions to the right. Bits shifted off of the end are lost.

```
x >> k;       // shifts x to the right by k bits
```

Question: how should we fill in new higher-order bits?

Problem: always filling with zeros means we may change the sign bit.

Solution: let’s fill with the sign bit!
Right Shift (\(\gg\))

The RIGHT SHIFT operator shifts a bit pattern a certain number of positions to the right. Bits shifted off of the end are lost.

\[
x \gg k; \quad \text{// shifts } x \text{ to the right by } k \text{ bits}
\]

Question: how should we fill in new higher-order bits?

Solution: let’s fill with the sign bit!

```c
short x = 2;    \// 0000 0000 0000 0010
x >> 1;         \// 0000 0000 0000 0001
printf("%d\n", x); \// 1
```
Right Shift (>>)

The RIGHT SHIFT operator shifts a bit pattern a certain number of positions to the right. Bits shifted off of the end are lost.

```
x >> k;       // shifts x to the right by k bits
```

Question: how should we fill in new higher-order bits?

Solution: let’s fill with the sign bit!

```
short x = -2;      // 1111 1111 1111 1110
x >> 1;            // 1111 1111 1111 1111
printf("%d\n", x); // -1!
```
There are *two kinds* of right shifts, depending on the value and type you are shifting:

- **Logical Right Shift**: fill new high-order bits with 0s.
- **Arithmetic Right Shift**: fill new high-order bits with the most-significant bit.

Unsigned numbers are right-shifted using **Logical Right Shift**.

Signed numbers are right-shifted using **Arithmetic Right Shift**.

This way, the sign of the number (if applicable) is preserved!
1. *Technically*, the C standard does not precisely define whether a right shift for signed integers is logical or arithmetic. However, *almost all compilers/machines* use arithmetic, and you can most likely assume this.

2. Operator precedence can be tricky! For example:

\[1 << 2 + 3 << 4 \text{ means } 1 << (2+3) << 4 \text{ because addition and subtraction have higher precedence than shifts! Always use parentheses to be sure:} \]

\[(1 << 2) + (3 << 4) \]
• The default type of a number literal in your code is an int.
• Let’s say you want a long with the index-32 bit as 1:

```java
long num = 1L << 32;
```

• This doesn’t work! 1 is by default an int, and you can’t shift an int by 32 because it only has 32 bits. You must specify that you want 1 to be a long.

```java
long num = 1L << 32;
```
Recap

- **Recap**: Integer Representations
- Truncating and Expanding
- Bitwise Boolean Operators and Masks
- **Demo 1**: Courses
- **Break**: Announcements
- **Demo 2**: Powers of 2
- Bit Shift Operators

Next time: How can a computer represent and manipulate more complex data like text?
Demo: Absolute Value