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CS107, Lecture 3
Bits and Bytes; Bitwise Operators

reading:
Bryant & O’Hallaron, Ch. 2.1
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Plan For Today
• Recap: Integer Representations
• Truncating and Expanding
• Bitwise Operators and Masks
• Demo 1: Courses
• Break: Announcements
• Demo 2: Powers of 2
• Bit Shift Operators
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Plan For Today
• Recap: Integer Representations
• Truncating and Expanding
• Bitwise Operators and Masks
• Demo 1: Courses
• Break: Announcements
• Demo 2: Powers of 2
• Bit Shift Operators
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Base 2

1 0 1 1
20212223
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Hexadecimal
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Unsigned Integers



7

Signed Integers: Two’s Complement
• In two’s complement, we represent a 

positive number as itself, and its 
negative equivalent as the two’s 
complement of itself.
• The two’s complement of a number is 

the binary digits inverted, plus 1.
• This works to convert from positive to 

negative, and back from negative to 
positive!
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Signed Integers: Two’s Complement
• Con: more difficult to represent, and 

difficult to convert to/from decimal and 
between positive and negative.
• Pro: only 1 representation for 0!
• Pro: all bits are used to represent as 

many numbers as possible
• Pro: it turns out that the most significant 

bit still indicates the sign of a number.
• Pro: arithmetic is easy: we just add!



9

Overflow and Underflow
• If you exceed the maximum value of your bit representation, you wrap around 

or overflow back to the smallest bit representation.

0b1111 + 0b1 = 0b0000

• If you go below the minimum value of your bit representation, you wrap 
around or underflow back to the largest bit representation.

0b0000 - 0b1 = 0b1111
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Unsigned Integers
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Signed Numbers
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Aside: ASCII
• ASCII is an encoding from common characters (letters, symbols, etc.) to bit 

representations (chars).
• E.g. 'A’ is 0x41

• Neat property: all uppercase letters, and all lowercase letters, are sequentially 
represented!
• E.g. 'B’ is 0x42
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printf and Integers
• There are 3 placeholders for 32-bit integers that we can use:
• %d: signed 32-bit int
• %u: unsigned 32-bit int
• %x: hex 32-bit int

• As long as the value is a 32-bit type, printf will treat it according to the 
placeholder!
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Casting
• What happens at the byte level when we cast between variable types?  The 

bytes remain the same! This means they may be interpreted differently 
depending on the type.

int v = -12345;
unsigned int uv = v;
printf("v = %d, uv = %u\n", v, uv);

This prints out: "v = -12345, uv = 4294954951".  Why?
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Casting
• What happens at the byte level when we cast between variable types?  The 

bytes remain the same! This means they may be interpreted differently 
depending on the type.

int v = -12345;
unsigned int uv = v;
printf("v = %d, uv = %u\n", v, uv);

-12345 in binary is 1111 1111 1111 1111 1100 1111 1100 0111.
If we treat this binary representation as a positive number, it’s huge!
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Casting
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Comparisons Between Different Types
Be careful when comparing signed and unsigned integers.  C will implicitly cast
the signed argument to unsigned, and then performs the operation assuming 
both numbers are non-negative.

Expression Type Evaluation Correct?
0 == 0U
-1 < 0
-1 < 0U
2147483647 > -
2147483647 - 1
2147483647U > -
2147483647 - 1
2147483647 > 
(int)2147483648U
-1 > -2
(unsigned)-1 > -2
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Comparisons Between Different Types
Be careful when comparing signed and unsigned integers.  C will implicitly cast
the signed argument to unsigned, and then performs the operation assuming 
both numbers are non-negative.

Expression Type Evaluation Correct?
0 == 0U Unsigned true yes
-1 < 0
-1 < 0U
2147483647 > -
2147483647 - 1
2147483647U > -
2147483647 - 1
2147483647 > 
(int)2147483648U
-1 > -2
(unsigned)-1 > -2
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Comparisons Between Different Types
Be careful when comparing signed and unsigned integers.  C will implicitly cast
the signed argument to unsigned, and then performs the operation assuming 
both numbers are non-negative.

Expression Type Evaluation Correct?
0 == 0U Unsigned true yes
-1 < 0 Signed true yes
-1 < 0U
2147483647 > -
2147483647 - 1
2147483647U > -
2147483647 - 1
2147483647 > 
(int)2147483648U
-1 > -2
(unsigned)-1 > -2
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Comparisons Between Different Types
Be careful when comparing signed and unsigned integers.  C will implicitly cast
the signed argument to unsigned, and then performs the operation assuming 
both numbers are non-negative.

Expression Type Evaluation Correct?
0 == 0U Unsigned true yes
-1 < 0 Signed true yes
-1 < 0U Unsigned false no!
2147483647 > -
2147483647 - 1
2147483647U > -
2147483647 - 1
2147483647 > 
(int)2147483648U
-1 > -2
(unsigned)-1 > -2
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Comparisons Between Different Types
Be careful when comparing signed and unsigned integers.  C will implicitly cast
the signed argument to unsigned, and then performs the operation assuming 
both numbers are non-negative.

Expression Type Evaluation Correct?
0 == 0U Unsigned true yes
-1 < 0 Signed true yes
-1 < 0U Unsigned false no!
2147483647 > -
2147483647 - 1 Signed true yes

2147483647U > -
2147483647 - 1
2147483647 > 
(int)2147483648U
-1 > -2
(unsigned)-1 > -2
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Comparisons Between Different Types
Be careful when comparing signed and unsigned integers.  C will implicitly cast
the signed argument to unsigned, and then performs the operation assuming 
both numbers are non-negative.

Expression Type Evaluation Correct?
0 == 0U Unsigned true yes
-1 < 0 Signed true yes
-1 < 0U Unsigned false no!
2147483647 > -
2147483647 - 1 Signed true yes

2147483647U > -
2147483647 - 1 Unsigned false no!

2147483647 > 
(int)2147483648U
-1 > -2
(unsigned)-1 > -2
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Comparisons Between Different Types
Be careful when comparing signed and unsigned integers.  C will implicitly cast
the signed argument to unsigned, and then performs the operation assuming 
both numbers are non-negative.

Expression Type Evaluation Correct?
0 == 0U Unsigned true yes
-1 < 0 Signed true yes
-1 < 0U Unsigned false no!
2147483647 > -
2147483647 - 1 Signed true yes

2147483647U > -
2147483647 - 1 Unsigned false no!

2147483647 > 
(int)2147483648U Signed true no!

-1 > -2
(unsigned)-1 > -2
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Comparisons Between Different Types
Be careful when comparing signed and unsigned integers.  C will implicitly cast
the signed argument to unsigned, and then performs the operation assuming 
both numbers are non-negative.

Expression Type Evaluation Correct?
0 == 0U Unsigned true yes
-1 < 0 Signed true yes
-1 < 0U Unsigned false no!
2147483647 > -
2147483647 - 1 Signed true yes

2147483647U > -
2147483647 - 1 Unsigned false no!

2147483647 > 
(int)2147483648U Signed true no!

-1 > -2 Signed true yes
(unsigned)-1 > -2
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Comparisons Between Different Types
Be careful when comparing signed and unsigned integers.  C will implicitly cast
the signed argument to unsigned, and then performs the operation assuming 
both numbers are non-negative.

Expression Type Evaluation Correct?
0 == 0U Unsigned true yes
-1 < 0 Signed true yes
-1 < 0U Unsigned false no!
2147483647 > -
2147483647 - 1 Signed true yes

2147483647U > -
2147483647 - 1 Unsigned false no!

2147483647 > 
(int)2147483648U Signed true no!

-1 > -2 Signed true yes
(unsigned)-1 > -2 Unsigned true yes
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Comparisons Between Different Types

Which of the following statements are true? (assume that 
variables are set to values that place them in the spots shown) 

1. s3 > u3
2. u2 > u4
3. s2 > s4
4. s1 > s2
5. u1 > u2
6. s1 > u3 
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Comparisons Between Different Types

Which of the following statements are true? (assume that 
variables are set to values that place them in the spots shown) 

1. s3 > u3 - true
2. u2 > u4
3. s2 > s4
4. s1 > s2
5. u1 > u2
6. s1 > u3 
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Comparisons Between Different Types

Which of the following statements are true? (assume that 
variables are set to values that place them in the spots shown) 

1. s3 > u3 - true
2. u2 > u4 - true
3. s2 > s4
4. s1 > s2
5. u1 > u2
6. s1 > u3 
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Comparisons Between Different Types

Which of the following statements are true? (assume that 
variables are set to values that place them in the spots shown) 

1. s3 > u3 - true
2. u2 > u4 - true
3. s2 > s4 - false
4. s1 > s2
5. u1 > u2
6. s1 > u3 
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Comparisons Between Different Types

Which of the following statements are true? (assume that 
variables are set to values that place them in the spots shown) 

1. s3 > u3 - true
2. u2 > u4 - true
3. s2 > s4 - false
4. s1 > s2 - true
5. u1 > u2
6. s1 > u3 
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Comparisons Between Different Types

Which of the following statements are true? (assume that 
variables are set to values that place them in the spots shown) 

1. s3 > u3 - true
2. u2 > u4 - true
3. s2 > s4 - false
4. s1 > s2 - true
5. u1 > u2 - true
6. s1 > u3 
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Comparisons Between Different Types

Which of the following statements are true? (assume that 
variables are set to values that place them in the spots shown) 

1. s3 > u3 - true
2. u2 > u4 - true
3. s2 > s4 - false
4. s1 > s2 - true
5. u1 > u2 - true
6. s1 > u3 - true
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Plan For Today
• Recap: Integer Representations
• Truncating and Expanding
• Bitwise Operators and Masks
• Demo 1: Courses
• Break: Announcements
• Demo 2: Powers of 2
• Bit Shift Operators
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Expanding Bit Representations
• Sometimes, we want to convert between two integers of different sizes (e.g. 

short to int, or int to long).
• We might not be able to convert from a bigger data type to a smaller data 

type, but we do want to always be able to convert from a smaller data type to 
a bigger data type.
• For unsigned values, we can add leading zeros to the representation (“zero 

extension”)
• For signed values, we can repeat the sign of the value for new digits (“sign 

extension”
• Note: when doing <, >, <=, >= comparison between different size types, it will 

promote to the larger type.
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Expanding Bit Representation
unsigned short s = 32772; 
// short is a 16-bit format, so                     s = 1000 0000 0000 0100b

unsigned int i = s;
// conversion to 32-bit int, so i = 0000 0000 0000 0000 1000 0000 0000 0100b
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Expanding Bit Representation
unsigned short s = 32772; 
// short is a 16-bit format, so                     s = 1000 0000 0000 0100b

unsigned int i = s;
// conversion to 32-bit int, so i = 0000 0000 0000 0000 1000 0000 0000 0100b

— or —

short s = -4; 
// short is a 16-bit format, so                     s = 1111 1111 1111 1100b

int i = s;
// conversion to 32-bit int, so i = 1111 1111 1111 1111 1111 1111 1111 1100b
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Truncating Bit Representation
If we want to reduce the bit size of a number, C truncates the representation 
and discards the more significant bits.

What happens here? Let's look at the bits in x (a 32-bit int), 53191:
0000 0000 0000 0000 1100 1111 1100 0111
When we cast x to a short, it only has 16-bits, and C truncates the number:
1100 1111 1100 0111
This is -12345!  And when we cast sx back an int, we sign-extend the number.
1111 1111 1111 1111 1100 1111 1100 0111 // still -12345

int x = 53191;
short sx = x;
int y = sx;
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Truncating Bit Representation
If we want to reduce the bit size of a number, C truncates the representation 
and discards the more significant bits.

What happens here? Let's look at the bits in x (a 32-bit int), -3:
1111 1111 1111 1111 1111 1111 1111 1101
When we cast x to a short, it only has 16-bits, and C truncates the number:
1111 1111 1111 1101
This is -3! If the number does fit, it will convert fine. y looks like this:
1111 1111 1111 1111 1111 1111 1111 1101 // still -3

int x = -3;
short sx = x;
int y = sx;
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Truncating Bit Representation
If we want to reduce the bit size of a number, C truncates the representation 
and discards the more significant bits.

What happens here? Let's look at the bits in x (a 32-bit unsigned int), 128000:
0000 0000 0000 0001 1111 0100 0000 0000
When we cast x to a short, it only has 16-bits, and C truncates the number:
1111 0100 0000 0000
This is 62464!  Unsigned numbers can lose info too. Here is what y looks like:
0000 0000 0000 0000 1111 0100 0000 0000 // still 62464

unsigned int x = 128000;
unsigned short sx = x;
unsigned int y = sx;
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sizeof
sizeof takes a variable type as a parameter and returns its size in bytes.

sizeof(type)

For example:
sizeof(char) => 1
sizeof(short) => 2
sizeof(int) => 4
sizeof(unsigned int) => 4
sizeof(long) => 8
sizeof(char *) => 8
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Now that we understand 
binary representations, how 

can we manipulate them at the 
bit level?
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Plan For Today
• Recap: Integer Representations
• Truncating and Expanding
• Bitwise Operators and Masks
• Demo 1: Courses
• Break: Announcements
• Demo 2: Powers of 2
• Bit Shift Operators
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Bitwise Operators
• You’re already familiar with many operators in C:
• Arithmetic operators: +, -, *, /, %
• Comparison operators: ==, !=, <, >, <=, >=
• Logical Operators: &&, ||, !

• Today, we’re introducing a new category of operators: bitwise operators:
• &, |, ~, ^, <<, >>
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And (&)
AND is a binary operator.  The AND of 2 bits is 1 if both bits are 1, and 0 
otherwise.

a b output

0 0 0

0 1 0

1 0 0

1 1 1

output = a & b;
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Or (|)
OR is a binary operator.  The OR of 2 bits is 1 if either (or both) bits is 1. 

a b output

0 0 0

0 1 1

1 0 1

1 1 1

output = a | b;
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Not (~)
NOT is a unary operator.  The NOT of a bit is 1 if the bit is 0, or 1 otherwise.  

a output

0 1

1 0

output = ~a;
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Exclusive Or (^)
Exclusive Or (XOR) is a binary operator.  The XOR of 2 bits is 1 if exactly one of 
the bits is 1, or 0 otherwise.

a b output

0 0 0

0 1 1

1 0 1

1 1 0

output = a ^ b;
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An Aside: Boolean Algebra
• These operators are not unique to computers; they are part of a general area 

called Boolean Algebra.  These are applicable in math, hardware, computers, 
and more!
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Operators on Multiple Bits
• When these operators are applied to numbers (multiple bits), the operator is 

applied to the corresponding bits in each number.  For example: 

0110
& 1100
----
0100

0110
| 1100
----
1110

0110
^ 1100
----
1010

~ 1100
----
0011

AND OR XOR NOT

Note: these are different from the logical 
operators AND (&&), OR (||) and NOT (!).
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Operators on Multiple Bits
• When these operators are applied to numbers (multiple bits), the operator is 

applied to the corresponding bits in each number.  For example: 

0110
& 1100
----
0100

0110
| 1100
----
1110

0110
^ 1100
----
1010

~ 1100
----
0011

AND OR XOR NOT

This is different from logical 
AND (&&).  The logical AND 
returns true if both are 
nonzero, or false otherwise.
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Operators on Multiple Bits
• When these operators are applied to numbers (multiple bits), the operator is 

applied to the corresponding bits in each number.  For example: 

0110
& 1100
----
0100

0110
| 1100
----
1110

0110
^ 1100
----
1010

~ 1100
----
0011

AND OR XOR NOT

This is different from logical 
NOT (!).  The logical NOT 
returns true if this is zero, and 
false otherwise.
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Bit Vectors and Sets
• We can use bit vectors (ordered collections of bits) to represent finite sets, and 

perform functions such as union, intersection, and complement.
• Example: we can represent current courses taken using a char.

0 0 1 0 0 0 1 1

CS
10
6A

CS
10
6B

CS
10
6X

CS
10
7

CS
11
0

CS
10
3

CS
10
9

CS
16
1
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Bit Vectors and Sets

• How do we find the union of two sets of courses taken?  Use OR:

00100011
| 01100001
--------
01100011

0 0 1 0 0 0 1 1

CS
10
6A

CS
10
6B

CS
10
6X

CS
10
7

CS
11
0

CS
10
3

CS
10
9

CS
16
1
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Bit Vectors and Sets

• How do we find the intersection of two sets of courses taken?  Use AND:

00100011
& 01100001
--------
00100001

0 0 1 0 0 0 1 1

CS
10
6A

CS
10
6B

CS
10
6X

CS
10
7

CS
11
0

CS
10
3

CS
10
9

CS
16
1
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Bit Masking
• We will frequently want to manipulate or isolate out specific bits in a larger 

collection of bits.  A bitmask is a constructed bit pattern that we can use, along 
with bit operators, to do this.
• Example: how do we update our bit vector to indicate we’ve taken CS107?

00100011
| 00001000
--------
00101011

0 0 1 0 0 0 1 1

CS
10
6A

CS
10
6B

CS
10
6X

CS
10
7

CS
11
0

CS
10
3

CS
10
9

CS
16
1
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Bit Masking
#define CS106A 0x1    /* 0000 0001 */
#define CS106B 0x2    /* 0000 0010 */
#define CS106X 0x4    /* 0000 0100 */
#define CS107  0x8    /* 0000 1000 */
#define CS110  0x10   /* 0001 0000 */
#define CS103  0x20   /* 0010 0000 */
#define CS109  0x40   /* 0100 0000 */
#define CS161  0x80   /* 1000 0000 */

char myClasses = ...;
myClasses = myClasses | CS107; // Add CS107
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Bit Masking
#define CS106A 0x1    /* 0000 0001 */
#define CS106B 0x2    /* 0000 0010 */
#define CS106X 0x4    /* 0000 0100 */
#define CS107  0x8    /* 0000 1000 */
#define CS110  0x10   /* 0001 0000 */
#define CS103  0x20   /* 0010 0000 */
#define CS109  0x40   /* 0100 0000 */
#define CS161  0x80   /* 1000 0000 */

char myClasses = ...;
myClasses |= CS107; // Add CS107
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Bit Masking
• Example: how do we update our bit vector to indicate we’ve not taken CS103?

00100011
& 11011111
--------
00000011

0 0 1 0 0 0 1 1

CS
10
6A

CS
10
6B

CS
10
6X

CS
10
7

CS
11
0

CS
10
3

CS
10
9

CS
16
1

char myClasses = ...;
myClasses = myClasses & ~CS103; // Remove CS103
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Bit Masking
• Example: how do we update our bit vector to indicate we’ve not taken CS103?

00100011
& 11011111
--------
00000011

0 0 1 0 0 0 1 1

CS
10
6A

CS
10
6B

CS
10
6X

CS
10
7

CS
11
0

CS
10
3

CS
10
9

CS
16
1

char myClasses = ...;
myClasses &= ~CS103; // Remove CS103
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Bit Masking
• Example: how do we check if we’ve taken CS106B?

00100011
& 00000010
--------
00000010

0 0 1 0 0 0 1 1

CS
10
6A

CS
10
6B

CS
10
6X

CS
10
7

CS
11
0

CS
10
3

CS
10
9

CS
16
1

char myClasses = ...;
if (myClasses & CS106B) {...

// taken CS106B!
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Bit Masking
• Example: how do we check if we’ve not taken CS107?

0 0 1 0 0 0 1 1

CS
10
6A

CS
10
6B

CS
10
6X

CS
10
7

CS
11
0

CS
10
3

CS
10
9

CS
16
1

char myClasses = ...;
if ((myClasses & CS107) ^ CS107) {...

// not taken CS107!

00100011
& 00001000
--------
00000000

00000000
^ 00001000
--------
00001000
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Bit Masking
• Example: how do we check if we’ve not taken CS107?

0 0 1 0 0 0 1 1

CS
10
6A

CS
10
6B

CS
10
6X

CS
10
7

CS
11
0

CS
10
3

CS
10
9

CS
16
1

char myClasses = ...;
if (!(myClasses & CS107)) {...

// not taken CS107!

00100011
& 00001000
--------
00000000
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Demo: Bitmasks and GDB
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Bit Masking
• Bit masking is also useful for integer representations as well.  For instance, we 

might want to check the value of the most-significant bit, or just one of the 
middle bytes.

• Example: If I have a 32-bit integer j, what operation should I perform if I want 
to get just the lowest byte in j?

int j = ...;
int k = j & 0xff; // mask to get just lowest byte 
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Practice: Bit Masking
• Practice 1: write an expression that, given a 32-bit integer j, sets its least-

significant byte to all 1s, but preserves all other bytes.

• Practice 2: write an expression that, given a 32-bit integer j, flips 
(“complements”) all but the least-significant byte, and preserves all other 
bytes.
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Practice: Bit Masking
• Practice 1: write an expression that, given a 32-bit integer j, sets its least-

significant byte to all 1s, but preserves all other bytes.
j | 0xff

• Practice 2: write an expression that, given a 32-bit integer j, flips 
(“complements”) all but the least-significant byte, and preserves all other 
bytes.

j ^ ~0xff
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Plan For Today
• Recap: Integer Representations
• Truncating and Expanding
• Bitwise Boolean Operators and Masks
• Demo 1: Courses
• Break: Announcements
• Demo 2: Powers of 2
• Bit Shift Operators
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Announcements
• Please send us any OAE letters or athletics conflicts as soon as possible. 
• Assignment 0 deadline tonight at 11:59PM PST
• Assignment 1 (Bit operations!) goes out tonight at Assignment 0 deadline
• Saturated arithmetic
• Cell Automata
• Unicode and UTF-8

• Lab 1 this week!
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Powers of 2

Without using loops, how can we detect if a 
binary number is a power of 2?  What is 
special about its binary representation and 
how can we leverage that?
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Demo: Powers of 2



71

Plan For Today
• Recap: Integer Representations
• Truncating and Expanding
• Bitwise Boolean Operators and Masks
• Demo 1: Courses
• Break: Announcements
• Demo 2: Powers of 2
• Bit Shift Operators
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Left Shift (<<)
The LEFT SHIFT operator shifts a bit pattern a certain number of positions to the 
left.  New lower order bits are filled in with 0s, and bits shifted off of the end are 
lost.

x << k; // shifts x to the left by k bits

8-bit examples:
00110111 << 2 results in 11011100
01100011 << 4 results in 00110000
10010101 << 4 results in 01010000
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Right Shift (>>)
The RIGHT SHIFT operator shifts a bit pattern a certain number of positions to 
the right.  Bits shifted off of the end are lost.

x >> k; // shifts x to the right by k bits

Question: how should we fill in new higher-order bits?
Idea: let’s follow left-shift and fill with 0s.

short x = 2; // 0000 0000 0000 0010
x >> 1; // 0000 0000 0000 0001
printf("%d\n", x); // 1
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Right Shift (>>)
The RIGHT SHIFT operator shifts a bit pattern a certain number of positions to 
the right.  Bits shifted off of the end are lost.

x >> k; // shifts x to the right by k bits

Question: how should we fill in new higher-order bits?
Idea: let’s follow left-shift and fill with 0s.

short x = -2; // 1111 1111 1111 1110
x >> 1; // 0111 1111 1111 1111
printf("%d\n", x); // 32767!
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Right Shift (>>)
The RIGHT SHIFT operator shifts a bit pattern a certain number of positions to 
the right.  Bits shifted off of the end are lost.

x >> k; // shifts x to the right by k bits

Question: how should we fill in new higher-order bits?
Problem: always filling with zeros means we may change the sign bit.
Solution: let’s fill with the sign bit!



76

Right Shift (>>)
The RIGHT SHIFT operator shifts a bit pattern a certain number of positions to 
the right.  Bits shifted off of the end are lost.

x >> k; // shifts x to the right by k bits

Question: how should we fill in new higher-order bits?
Solution: let’s fill with the sign bit!

short x = 2; // 0000 0000 0000 0010
x >> 1; // 0000 0000 0000 0001
printf("%d\n", x); // 1
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Right Shift (>>)
The RIGHT SHIFT operator shifts a bit pattern a certain number of positions to 
the right.  Bits shifted off of the end are lost.

x >> k; // shifts x to the right by k bits

Question: how should we fill in new higher-order bits?
Solution: let’s fill with the sign bit!

short x = -2; // 1111 1111 1111 1110
x >> 1; // 1111 1111 1111 1111
printf("%d\n", x); // -1!
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Right Shift (>>)
There are two kinds of right shifts, depending on the value and type you are 
shifting:
• Logical Right Shift: fill new high-order bits with 0s.
• Arithmetic Right Shift: fill new high-order bits with the most-significant bit.

Unsigned numbers are right-shifted using Logical Right Shift.
Signed numbers are right-shifted using Arithmetic Right Shift.

This way, the sign of the number (if applicable) is preserved!
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Shift Operation Pitfalls
1. Technically, the C standard does not precisely define whether a right shift for 

signed integers is logical or arithmetic.  However, almost all 
compilers/machines use arithmetic, and you can most likely assume this.

2. Operator precedence can be tricky!  For example:

1<<2 + 3<<4 means 1 << (2+3) << 4 because addition and 
subtraction have higher precedence than shifts!  Always use parentheses 
to be sure:

(1<<2) + (3<<4)
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Bit Operator Pitfalls
• The default type of a number literal in your code is an int.
• Let’s say you want a long with the index-32 bit as 1:

long num = 1 << 32;

• This doesn’t work!  1 is by default an int, and you can’t shift an int by 32 
because it only has 32 bits.  You must specify that you want 1 to be a long.

long num = 1L << 32;
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Recap
• Recap: Integer Representations
• Truncating and Expanding
• Bitwise Boolean Operators and Masks
• Demo 1: Courses
• Break: Announcements
• Demo 2: Powers of 2
• Bit Shift Operators

Next time: How can a computer represent and manipulate more complex data 
like text?
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Extra Slides
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Demo: Absolute Value


