CS107 Handy one-page of x86-64

Common instructions

mov
movs
movz
lea

add
sub
imul
neg

sal
sar
shr
and
or

xor
not

cmp
test

jmp
je
jne
js
jns
ig
jge
jl
jle
ja
jb

push
pop

call
ret

cmov src, register

Instruction suffixes

b

W
1
q

src, dst

bl src, dst
bl src, dst
addr, dst

src, dst
src, dst
src, dst
dst

count, dst
count, dst
count, dst
src, dst
src, dst
src, dst
dst

label
label
label
label
label
label
label
label
label
label
label

src
dst

fn

byte

word (2 bytes)

dst = src

byte to int, sign-extend
byte to int, zero-fill

dst = addr

dst += src
dst -=src
dst *=src
dst = -dst (arith inverse)

dst <<= count

dst >>= count (arith shift)
dst >>= count (logical shift)
dst &= src

dst |= src

dst A= src

dst = ~dst (bitwise inverse)

b-a, set flags
a&b, set flags

jump to label (unconditional)
jump equal ZF=1

jump not equal ZF=0

jump negative SF=1

jump not negative SF=0

jump > (signed) ZF=0 and SF=0OF
jump >= (signed) SF=OF

jump < (signed) SF!=0OF

jump <= (signed) ZF=1 or SF!=0OF
jump > (unsigned) CF=0 and ZF=0
jump < (unsigned) CF=1

add to top of stack

Mem[--%rsp] = src

remove top from stack

dst = Mem[%rsp++]

push %rip, jmp to fn

pop Y%rip

reg = src when condition holds,
using same condition suffixes as jmp

long /doubleword (4 bytes)
quadword (8 bytes)

Suffix is elided when can be inferred from operands
e.g. operand %rax implies g, %eax implies 1, and so on

Condition codes/flags

ZF
SF
CF
OF

Zero flag
Sign flag
Carry flag

Overflow flag

Registers
%rip Instruction pointer
%rsp Stack pointer
%rax Return value
%rdi 1st argument
%rsi 2nd argument
%rdx 3rd argument
%rcx 4th argument
%r8 5th argument
%r9 6th argument
%rl0e,%ril Callee-owned
%rbx,%rbp,

%r12-%15 Caller-owned

Addressing modes
Example source operands to mov

Immediate
mov $0x5, dst
$val
source is constant value

Register
mov %rax, dst
%R
R is register
source in %R register

Direct
mov 0x4033d9, dst
oxaddr
source read from Mem[Oxaddr]

Indirect
mov (%rax), dst
(%R)
R is register

source read from Mem[%R]

Indirect displacement
mov 8(%rax), dst
D(%R)
R is register
D is displacement
source read from Mem[%R + D]

Indirect scaled-index
mov 8(%rsp, %rcx, 4), dst

D(%RB,%RI,S)
RB is register for base
Rl is register for index (0 if empty)
D is displacement (0 if empty)
Sis scale 1, 2, 4 or 8 (1 if empty)
source read from

Mem[%RB + D + S*%RI]

