
CS 107 Final Review Session

Some Assembly Required

mov operand: scaling, indexing, displacement
mov 0x4(%eax, %ebx, 2), %ecx => %ecx = *((%eax + %ebx*2) + 0x4)

%eax -> base (default 0)

%ebx -> index (default 0)

2 -> scale (default 1)

0x4 -> displacement (default 0)

Data always flows from left to right!

mov examples
mov $1, (%eax, %ebx) => *(%eax + %ebx * 1 + 0) = 1

Scale and displacement defaulted

mov $1, (, %ebx, 4) => *(0 +%ebx * 4 + 0) = 1

Base and displacement defaulted

movl $1, (%rax, %rcx, 8) => *(%rax + %rcx * 8) = 1

Displacement defaulted

5

lea vs. mov (Lecture 12, Slide 32)
Operands mov Interpretation lea Interpretation

6(%rax), %rdx Go to the address (6 + what’s in %rax),
and copy data there into %rdx

Copy 6 + what’s in %rax into %rdx.

(%rax, %rcx), %rdx Go to the address (what’s in %rax +
what’s in %rcx) and copy data there
into %rdx

Copy (what’s in %rax + what’s in %rcx)
into %rdx.

(%rax, %rcx, 4), %rdx Go to the address (%rax + 4 * %rcx)
and copy data there into %rdx.

Copy (%rax + 4 * %rcx) into %rdx.

7(%rax, %rax, 8), %rdx Go to the address (7 + %rax + 8 *
%rax) and copy data there into %rdx.

Copy (7 + %rax + 8 * %rax) into %rdx.

Unlike mov, which copies data at the address
src to the destination, lea copies the value of
src itself to the destination.

Calling Convention Summary
Arguments (in order): %rdi, %rsi, %rdx, %rcx, %r8, %r9, (stack)

Return value: %rax

Stack pointer: %rsp

Instruction pointer: %rip

On the x86-64 guide and reference sheet! (You will have the reference sheet
during the exam).

Conditional Execution

Arithmetic/comparison instructions set flags: (cmp, xor, test, etc.).

Instructions with condition codes will check those flags and conditionally perform
an operation.

C Code
What does this assembly code
translate to?

int if_then(int param1) {
if (param1 == 6) {

param1++;
}

return param1 * 2;
}

00000000004004d6 <if_then>:
4004d6: cmp $0x6,%edi
4004d9: jne 4004de
4004db: add $0x1,%edi
4004de: lea (%rdi,%rdi,1),%eax
4004e1: retq

What order does cmp do things?
In the previous slide we saw cmp $6, %edi.

For jne, %edi == 6 and 6 == %edi are the same.

What if we have a jle for example? Is it %edi <= 6 or 6 <= %edi?

The best way to think about it is that cmp <op1>, <op2> will perform <op2> -
<op1>.

So jle will check if ZF=1 or SF!=OF (so it’ll check if the cmp result is <= 0).

So <op2> - <op1> <= 0 => <op2> <= <op1> => %edi <= 6.

9

Conditional Jumps (Lecture 13, Slide 35)
There are also variants of jmp that jump only if certain conditions are true (“Conditional
Jump”). The jump location for these must be hardcoded into the instruction.

Instruc4on Synonym Set Condition

je Label jz Equal / zero (ZF = 1)

jne Label jnz Not equal / not zero (ZF = 0)

js Label Negative (SF = 1)

jns Label Nonnegative (SF = 0)

jg Label jnle Greater (signed >) (SF = 0 and SF = OF)

jge Label jnl Greater or equal (signed >=) (SF = OF)

jl Label jnge Less (signed <) (SF != OF)

jle Label jng Less or equal (signed <=) (ZF = 1 or SF! = OF)

ja Label jnbe Above (unsigned >) (CF = 0 and ZF = 0)

jae Label jnb Above or equal (unsigned >=) (CF = 0)

jb Label jnae Below (unsigned <) (CF = 1)

jbe Label jna Below or equal (unsigned <=) (CF = 1 or ZF = 1)

10

Common If-Else Construction (Lecture 13, Slide 42)

if (num > 3) {
x = 10;

} else {
x = 7;

}

num++;

Test
Jump past if-body if test fails
If-body
Jump past else-body
Else-body
Past else body

If-Else In C If-Else In Assembly

11

Common For Loop Construction (Lecture 13, Slide 62)

for (init; test; update) {
body

}

init
while(test) {

body
update

}

C C Equivalent While Loop

Init
Jump to test
Body
Update
Test
Jump to body if success

For Loop Assembly

FP stands for Free Pizza

FP Motivation
Goal: Represent real numbers (decimals) on a computer.

Idea: Use scientific notation (can potentially represent large numbers very
compactly; 1.0*10^300 vs 1000000000000….)!

But computers work well in binary, so use base-2 scientific notation instead of
base-10.

We’ll work with 32-bit (single-precision) FP numbers, but the same reasoning
holds for FP numbers of any other bitwidth.

14

Fixed Point (Lecture 10, Slide 26)
Idea: Like in base 10, let’s add binary decimal places to our existing number representation.

Pros: arithmetic is easy! And we know exactly how much precision we have.

1 0 1 1 . 0 1 1
8s 4s 2s 1s 1/2s 1/4s 1/8s

FP Motivation
Scientific notation number: -2.3*10^20

Three parts:

+/-: sign

2.3: fraction

20: exponent

(Let’s fix our base so we don’t have to store it, we’ll be using base-2 for FP).

FP Representation
Same thing in FP!

Three parts:

Sign bit - 0 => positive, 1 => negative

Exponent - Same role as before

Fraction/Mantissa/Significand - Same role as before

17

IEEE Single Precision Floating Point (Lecture 10, Slide 35)

Sign bit
(0 = positive)

31 30 23 22 0

s exponent (8 bits) fraction (23 bits)

FP Exponents: Summary
Let’s say we have n bits for our exponent E. To get the true value of our exponent,
we compute:

2^(E - B)

E - The value of our exponent as an unsigned number

B - Bias = ((2^n) / 2) - 1 (So for IEEE 32-bit FP, n = 8, so B = ((2^8) / 2) - 1 = 127)

Example:

E = 10010001 => our true exponent will be E - B = 145 - 127 = 18.

FP Fractions: Summary
Let F be our fraction.

Idea: Let’s just assume that we always write our number as +/- 1.F * 2^(E - B).

We can get 1 additional bit of precision.

This is for normalized numbers, there are other types!

Different types of FP numbers!

Type of number Exponent (0 <= E <= 255) Fraction (F) Sign (S) Value

Zero 0 0 Any +/- 0

Denormalized 0 != 0 Any +/- 0.F * 2^(-B + 1)

Normalized (regular) 0 < E < 255 Any Any +/- 1.F * 2^(E - B)

Infinity 255 0 Any +/- Inf

Not a Number (NaN) 255 != 0 Any NaN

Can I get some Pointers on
the Final?

Generics: Motivation
How do we write a search function in C (return pointer to found element or NULL
otherwise).

int* search_int(int* haystack, int needle, size_t sz);

char* search_char(char* haystack, char needle, size_t sz);

long* search_long(long* haystack, long needle, size_t sz);

…

Strings? Custom types?

This is tedious: can we just have one function?

Generics: Motivation
Idea: Want to be able to store data of any type

=> Define void* to be a pointer to any type!

Attempt 1: void* search(void* haystack, void?? needle, size_t nelems);

What should the type of our needle be? Our needle can be any type as well, so
we should let the user pass it in as a pointer to the needle so it can be a void* (a
variable can’t have type void).

Attempt 2: void* search(void* haystack, void* needle, size_t nelems);

Generics: Motivation
Q: This will type check, but now we don’t know how big each element is
(remember, we can’t do haystack[i] if haystack is a void*!), so we can’t iterate
through haystack. How do we solve this?

A: User should tell us!

Attempt 3: void* search(void* haystack, void* needle, size_t width, size_t nelems);

Q: Almost there! What does == mean on void*?

A: User should tell us!

Generics: Motivation
Attempt 4: void* search(void* haystack, void* needle, size_t width, size_t nelems,
int (*cmp)(void*, void*));

Looks good to me! (cmp is a custom comparison function:
> 0 => greater than
< 0 => less than
== 0 => equals).

As a side-note, technically we could define the comparison function however we
wanted. However, the above definition is commonly how comparison functions are
structured. We take in two elements and we return an ordering (less than, greater
than, or equal to).

Let’s see how it looks! (Demo)

Practice Makes Perfect!

Final Extra Practice
Consider	the	following	x86-64	code	output	by	gcc	using	the	settings	we	use	for	this	class	(-Og):

<ham>:
mov (%rdi),%eax
lea (%rax,%rax,2),%esi
add %esi,%esi
mov $0x0,%ecx
imul $0x31,%esi
jmp L1

L3:
lea (%rcx,%rax,1),%edx
movslq %edx,%rdx
mov %esi,(%rdi,%rdx,4)
add $0x2,%eax
jmp L2

L4:
mov %ecx,%eax

L2:
cmp $0x9,%eax
jle L3
add $0x3,%ecx

L1:
cmp $0x9,%ecx
jle L4
mov $0xa,%eax
retq

Fill in the Blanks!
eliza[3] = _____________ * burr[0];

for (int i = 0; i < ___________; i+=___________) {

for (int j = ___________; j < ___________; j+=___________) {

burr[__________] = eliza[0]*eliza[1]*eliza[2]*eliza[3];

}

}

return ___________;

}

int ham(int *burr) {
int eliza[4];
eliza[0] = 7;
eliza[1] = 7;
eliza[2] = 1;

eliza[3] = 6 * burr[0];
for (int i = 0; i < 10; i+= 3) {

for (int j = i; j < 10; j+=2) {

burr[i + j] = eliza[0]*eliza[1]*eliza[2]*eliza[3];

}

}

return 10;

}

Final Exam #3, Problem 1: Setup

A	normalized	IEEE	32-bit	Float	is	stored	as	the	following	bit	pattern:

N EEEEEEEE SSSSSSSSSSSSSSSSSSSSSSS

where	N	is	the	sign	bit	(1	if	negative),	E	is	the	8-bit	exponent	(with	a	bias	of	127),	and	S	is	the	23-bit	signiFicand,	with	an	implicit	
leading	“1”.

Beyoncé and	Jay-Z	set	up	two	bank	accounts,	one	for	each	of	their	twins,	but	instead	of	using	IEEE	32-bit	Floats	to	represent	the	
account	balances,	they	created	a	new	made-up	“miniFloat”	as	a	Fittingly	“mini”	way	to	represent	the	account	balances.	A	miniFloat	
is	structured	the	same	as	an	IEEE	Float,	but	is	8	bits	instead	of	32,	with	1	sign	bit,	4	exponent	bits,	and	3	mantissa	bits,	and an	
exponent	bias	of	7.	

Final Exam #3, Problem 1

(a)		(3pts)	Twin	A’s	account	balance	is	stored	as	the	miniFloat	0 1110 010.	What	is	the	corresponding	(simpliFied)	decimal	number	
that	this	represents?

(b)		(3pts)	Twin	B’s	account	balance	is	stored	as	the	miniFloat	0 1011 001.	What	is	the	corresponding	(simpliFied)	decimal	number	
that	this	represents?

(c)	(4pts)	After	much	thought,	they	decide	to	merge	the	two	bank	accounts	together.	The	bank	correctly	performs	miniFloat	
addition	to	get	the	summed	balance	of	0 1110 011,	but	this	seems	off	to	Beyoncé and	Jay-Z.	What	is	the	corresponding	
(simpliFied)	decimal	number	that	this	represents?	Why	is	this	the	resulting	total	balance?	Why	do	or	don’t	you	predict	that	this
would	have	been	an	issue	if	they	had	used	regular	IEEE	32-bit	Floats	instead?	

Problem	1:	Floating	Point

(a)		160

(b)		18

(c)		176	– we	lose	precision	because	minifloat	does	not	have	enough	bits	to	store	the	entire	sum	of	the	number.	This	likely	would	
not	have	been	an	issue	with	IEEE	32-bit	floats,	since	there	are	many	more	bits	to	store	numbers	with	more	precision.	

Practice Final #2, Problem 2
2a) The function extract_min extracts the smallest element from a generic array according to a comparison function. The
client supplies an address as the first argument; the smallest element is written to this address and that element is removed
from the array. As an example, extract_min on the array {8, 5, 19, 11} with ordinary integer comparison writes 5 to the
client's address, changes the array contents to {8, 19, 11}, and decrements the number of elements from 4 to 3. The order
of the remaining array elements is preserved and the array's storage is not resized. Assume the array has at least one
element.

The provided find_min function returns a pointer to the smallest element in a generic array. The use of find_min below is
correct and you can assume find_min is correctly implemented. Complete the implementation of extract_min below.

void extract_min(void *addr, void *base, size_t *p_nelems, size_t width, int (*cmp)(const void *, const void *)){

void *min = find_min(base, *p_nelems, width, cmp);

2a)

void extract_min(void *addr, void *base, size_t *p_nelems, size_t width, int (*cmp)(const void *, const void *)){

void *min = find_min(base, *p_nelems, width, cmp);

memcpy(addr, min, width);

size_t bytes_to_move = (*p_nelems * width) – ((char *)min + width – (char *)base);

memmove(min, (char *)min + width, bytes_to_move);

(*p_nelems)--;
}

Exam 2 Problem 1: C-strings
The function substring (char *input, size_t pos, size_t len) is intended to trim input to the sequence of characters starting at
pos and continuing for len characters. If pos or len is out of range for the input string, the behavior is undefined. The
implementation below is buggy:
void buggy_substring(char *input, size_t pos, size_t len) {

input += pos;
input[len] = '\0';

}
You write a program to test the function:
int main(int argc, char *argv[]) {

char name[16];
strcpy(name, "Tessier-Lavigne"); buggy_substring(name, 3, 2); printf("%s\n", name);
return 0;

}

1a) The above test program is intended to print "si". What is printed instead?

1b) You change the prototype of substring to take the input string by reference. Implement the body of the function so that it works
correctly and is compatible with the new prototype.

void substring(char **p_input, size_t pos, size_t len) {

1c) Complete the program started below to test the substring function. Compute the substring of name starting at position 3 of
length 2 and print it.

int main(int argc, char *argv[]) {
char name[16];
strcpy(name, "Tessier-Lavigne");

1a) "Tessi"

1b)

void substring(char **p_input, size_t pos, size_t len) {

(*p_input) += pos;

(*p_input)[len] = '\0';

}

1c)

int main(int argc, char *argv[]) {

char name[16];

strcpy(name, "Tessier-Lavigne"); char *ptr = name; substring(&ptr, 3, 2); printf("%s\n", ptr);

}

Practice Exam 2 Problem 5: Runtime stack

The function concat is a poorly-coded attempt at concatenation. Not only does it declare the result array with an arbitrary small size,
it returns the address of that stack-allocated array. Review the C source below on the left and the generated assembly on the right.

char *concat(const char *s, const char *t) concat{

char buffer[10];
char *result = buffer;

strcpy(result, s);
strcat(result, t);
return result;

}

int main(int argc, char *argv[]){

char *title = concat(argv[1], argv[2]);
printf("%s\n", title);
return 0;

}

concat:
push %rbx
sub $0x10,%rsp
mov %rsi,%rbx
mov %rdi,%rsi
mov %rsp,%rdi
callq <strcpy>
mov %rbx,%rsi
mov %rsp,%rdi
callq <strcat>
mov %rsp,%rax
add $0x10,%rsp
pop %rbx
retq

main:
sub $0x8,%rsp
mov %rsi,%rax
mov 0x10(%rsi),%rsi
mov 0x8(%rax),%rdi callq <concat>
mov %rax,%rsi
mov $0x401850,%edi mov $0x0,%eax callq <printf>
mov $0x0,%eax
add $0x8,%rsp
retq

5a) Running ./program LelandStanfordJunior University crashes during execution. Circle the assembly instruction at which the crash
occurs and explain why this instruction fails to execute.

5b) Seeing the array is too small, the implementer enlarges the size of the buffer declared within concat to:

char buffer[4096];

After this change, running ./program LelandStanfordJunior University now prints LelandStanfordJuniorUniversity. Explain why the
program appears to work correctly despite the fact that concat returns the address of a stack-allocated array.

5c) Not wanting to squander memory, they then change the declaration of buffer to the proper size:

char buffer[strlen(s) + strlen(t) + 1];

After this change, ./program LelandStanfordJunior University now prints garbage. Explain how the change in sizing the array leads
to this change in behavior.

