CS107, Lecture 10
Floating Point

Reading: B&O 2.4
CS107 Topic 5: How can a computer represent real numbers in addition to integer numbers?
Learning Goals

Understand the design and compromises of the floating point representation, including:

• Fixed point vs. floating point
• How a floating point number is represented in binary
• Issues with floating point imprecision
• Other potential pitfalls using floating point numbers in programs
Plan For Today

• **Recap:** Generics with Function Pointers
• Representing real numbers
• Fixed Point
• **Break:** Announcements
• Floating Point
• Floating Point Arithmetic

```bash
cp -r /afs/ir/class/cs107/samples/lectures/lect10 .
```
• Recap: Generics with Function Pointers
• Representing real numbers
• Fixed Point
• **Break:** Announcements
• Floating Point
• Floating Point Arithmetic
Function Pointers

• In C, there is a variable type for functions!
• We can pass functions as parameters, store functions in variables, etc.
• Why is this useful?
Sometimes, there is functionality that cannot be made generic.

```c
void bubble_sort(void *arr, int n, int elem_size_bytes) {
    while (true) {
        bool swapped = false;
        for (int i = 1; i < n; i++) {
            void *prev_elem = (char *)arr + (i-1)*elem_size_bytes;
            void *curr_elem = (char *)arr + i*elem_size_bytes;
            if (curr_elem should come before prev_elem) {
                swapped = true;
                swap(prev_elem, curr_elem, elem_size_bytes);
            }
        }
        if (!swapped) {
            return;
        }
    }
}
```
Sometimes, there is functionality that \textit{cannot} be made generic. The caller can pass in a function to perform that functionality for the data they are providing.

```c
void bubble_sort(void *arr, int n, int elem_size_bytes,
               bool (*cmp_fn)(const void *, const void *))
{
    bool swapped = false;
    for (int i = 1; i < n; i++) {
        void *prev_elem = (char *)arr + (i-1)*elem_size_bytes;
        void *curr_elem = (char *)arr + i*elem_size_bytes;
        if (cmp_fn(prev_elem, curr_elem) > 0) {
            swapped = true;
            swap(prev_elem, curr_elem, elem_size_bytes);
        }
    }
    if (!swapped) {
        return;
    }
}
```
Generic C Standard Library Functions

• **qsort** – I can sort an array of any type! To do that, I need you to provide me a function that can compare two elements of the kind you are asking me to sort.

• **bsearch** – I can use binary search to search for a key in an array of any type! To do that, I need you to provide me a function that can compare two elements of the kind you are asking me to search.

• **lfind** – I can use linear search to search for a key in an array of any type! To do that, I need you to provide me a function that can compare two elements of the kind you are asking me to search.

• **lsearch** - I can use linear search to search for a key in an array of any type! I will also add the key for you if I can’t find it. In order to do that, I need you to provide me a function that can compare two elements of the kind you are asking me to search.
Generic C Standard Library Functions

• **scandir** – I can create a directory listing with any order and contents! To do that, I need you to provide me a function that tells me whether or not you want me to include a given directory entry in the listing. I also need you to provide me a function that tells me the correct ordering of two given directory entries.
Function Pointers

Here’s the variable type syntax for a function:

```
[return type] (*[name])([parameters])
```
Function Pointers

```c
int do_something(char *str) {
    ...
}

int main(int argc, char *argv[]) {
    ...
    int (*func_var)(char *) = do_something;
    ...
    func_var("testing");
    return 0;
}
```
Function Pointers

```c
void bubble_sort(void *arr, int n, int elem_size_bytes, int (*cmp_fn)(const void *, const void *)) {

...}

int cmp_double(const void *, const void *) {...}

int main(int argc, char *argv[]) {

    double values[] = {1.2, 3.5, 12.2};
    int n = sizeof(values) / sizeof(values[0]);
    bubble_sort(values, n, sizeof(*values), cmp_double);

    ...}
```
Comparison Functions

• Comparison functions are a common use of function parameters, because many generic functions must know how to compare elements of your type.

• Comparison functions always take *pointers to the data they care about*, since the data could be any size!

When writing a comparison function callback, use the following pattern:

1) Cast the void *argument(s) and set typed pointers equal to them.
2) Dereference the typed pointer(s) to access the values.
3) Perform the necessary operation.

(steps 1 and 2 can often be combined into a single step)
Comparison Functions

- It should return:
 - < 0 if first value should come before second value
 - > 0 if first value should come after second value
 - 0 if first value and second value are equivalent

- This is the same return value format as `strcmp`!

```c
int (*compare_fn)(const void *a, const void *b)
```
int integer_compare(void *ptr1, void *ptr2) {
 // cast arguments to int *s and dereference
 int num1 = *(int *)ptr1;
 int num2 = *(int *)ptr2;

 // perform operation
 return num1 - num2;
}

...qsort(mynums, count, sizeof(*mynums), integer_compare);
int string_compare(void *ptr1, void *ptr2) {
 // cast arguments and dereference
 char *str1 = *(char **)ptr1;
 char *str2 = *(char **)ptr2;

 // perform operation
 return strcmp(str1, str2);
}

... qsort(mystrs, count, sizeof(*mystrs), string_compare);
• We use `void *` pointers and memory operations like `memcpy` and `memmove` to make data operations generic.

• We use `function pointers` to make logic/functionality operations generic.
memset is a function that sets a specified amount of bytes at one address to a certain value.

```c
void *memset(void *s, int c, size_t n);
```

It fills n bytes starting at memory location `s` with the byte `c`. (It also returns `s`).

```c
int counts[5];
memset(counts, 0, 3);  // zero out first 3 bytes at counts
memset(counts + 3, 0xff, 4);  // set 3rd entry’s bytes to 1s
```
Plan For Today

• Recap: Generics with Function Pointers
• Representing real numbers
• Fixed Point
• Break: Announcements
• Floating Point
• Floating Point Arithmetic
Real Numbers

• We previously discussed representing integer numbers using two’s complement.

• However, this system does not represent real numbers such as 3/5 or 0.25.

• How can we design a representation for real numbers?
Problem: There are an *infinite* number of real number values between two numbers!

Integers between 0 and 2: 1

Real Numbers Between 0 and 2: 0.1, 0.01, 0.001, 0.0001, 0.00001,...

We need a fixed-width representation for real numbers. Therefore, by definition, *we will not be able to represent all numbers.*
Problem: every number base has un-representable real numbers.

Base 10: \(\frac{1}{6}_{10} = 0.16666666..._{10} \)

Base 2: \(\frac{1}{10}_{10} = 0.000110011001100110011..._{2} \)

Therefore, by representing in base 2, *we will not be able to represent all numbers*, even those we can exactly represent in base 10.
Fixed Point

Idea: Like in base 10, let’s add binary decimal places to our existing number representation.

5 9 3 4 . 2 1 6

1 0 1 1 . 0 1 1
Plan For Today

- **Recap**: Generics with Function Pointers
- Representing real numbers

Fixed Point

- **Break**: Announcements
- Floating Point
- Floating Point Arithmetic
Fixed Point

Idea: Like in base 10, let’s add binary decimal places to our existing number representation.

1011.011

<table>
<thead>
<tr>
<th>8s</th>
<th>4s</th>
<th>2s</th>
<th>1s</th>
<th>1/2s</th>
<th>1/4s</th>
<th>1/8s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pros: arithmetic is easy! And we know exactly how much precision we have.
Fixed Point

Problem: we must fix where the decimal point is in our representation. What should we pick? This also fixes us to 1 place per bit.

```
. 0 1 1 0 0 1 1
  1/2s  1/4s  1/8s  ...

1 0 1 1 0 . 1 1
  16s  8s  4s  2s  1s  1/2s  1/4s
```
Fixed Point

Problem: we must fix where the decimal point is in our representation. What should we pick? This also fixes us to 1 place per bit.

$$5.07 \times 10^{30} \quad \text{Base 10}$$

$$9.86 \times 10^{-32} \quad \text{Base 2}$$

To be able to store both these numbers using the same fixed-point representation, the bit width of the type would need to be at least 207 bits wide!
Let’s Get Real

What would be nice to have in a real number representation?

• Represent widest range of numbers possible
• Flexible “floating” decimal point
• Represent scientific notation numbers, e.g. 1.2×10^6
• Still be able to compare quickly
• Have more predictable overflow behavior
Plan For Today

• Recap: Generics with Function Pointers
• Representing real numbers
• Fixed Point

• Break: Announcements
• Floating Point
• Floating Point Arithmetic
Midterm Exam

• The midterm exam is **Fri. 11/1 11:30AM-1:20PM** in Nvidia Aud. and Cubberley Aud.
 • Last names A-N: Nvidia Auditorium
 • Last Names O-Z: Cubberley Auditorium
• Covers material through *lab4/assign4* (no floats or assembly language)
• Closed-book, 1 2-sided page of notes permitted, C reference sheet provided
• Administered via BlueBook software (on your laptop)
• Practice materials and BlueBook download available on course website
• If you have academic (e.g. OAE) or athletics accommodations, please let us know by **Sunday 10/27** if possible.
• If you do not have a workable laptop for the exam, you **must** let us know by **Sunday 10/27**. Limited charging outlets will be available for those who need them.
Plan For Today

- **Recap**: Generics with Function Pointers
- Representing real numbers
- Fixed Point

Break: Announcements

- **Floating Point**
- Floating Point Arithmetic
Let’s Get Real

What would be nice to have in a real number representation?

- Represent widest range of numbers possible
- Flexible “floating” decimal point
- Still be able to compare quickly
- Represent scientific notation numbers, e.g. 1.2×10^6
- Have more predictable overflow behavior
Let’s aim to represent numbers of the following scientific-notation-like format:

\[x \times 2^y \]

With this format, 32-bit floats represent numbers in the range \(\approx 1.2 \times 10^{-38} \) to \(\approx 3.4 \times 10^{38} \)! Is every number between those representable? No.
IEEE Single Precision Floating Point

\[x \times 2^y \]

Sign bit (0 = positive)

<table>
<thead>
<tr>
<th>31</th>
<th>30</th>
<th>23</th>
<th>22</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>exponent (8 bits)</td>
<td>fraction (23 bits)</td>
<td>0</td>
</tr>
</tbody>
</table>
Exponent

<table>
<thead>
<tr>
<th>Exponent (Binary)</th>
<th>Exponent (Base 10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11111111</td>
<td>?</td>
</tr>
<tr>
<td>11111110</td>
<td>?</td>
</tr>
<tr>
<td>11111101</td>
<td>?</td>
</tr>
<tr>
<td>11111100</td>
<td>?</td>
</tr>
<tr>
<td>...</td>
<td>?</td>
</tr>
<tr>
<td>00000011</td>
<td>?</td>
</tr>
<tr>
<td>00000010</td>
<td>?</td>
</tr>
<tr>
<td>00000001</td>
<td>?</td>
</tr>
<tr>
<td>00000000</td>
<td>?</td>
</tr>
</tbody>
</table>
Exponent

<table>
<thead>
<tr>
<th>Exponent (Binary)</th>
<th>Exponent (Base 10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11111111</td>
<td>RESERVED</td>
</tr>
<tr>
<td>11111110</td>
<td>?</td>
</tr>
<tr>
<td>11111101</td>
<td>?</td>
</tr>
<tr>
<td>11111100</td>
<td>?</td>
</tr>
<tr>
<td>...</td>
<td>?</td>
</tr>
<tr>
<td>00000011</td>
<td>?</td>
</tr>
<tr>
<td>00000010</td>
<td>?</td>
</tr>
<tr>
<td>00000001</td>
<td>?</td>
</tr>
<tr>
<td>00000000</td>
<td>RESERVED</td>
</tr>
<tr>
<td>Exponent (Binary)</td>
<td>Exponent (Base 10)</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>11111111</td>
<td>RESERVED</td>
</tr>
<tr>
<td>11111110</td>
<td>127</td>
</tr>
<tr>
<td>11111101</td>
<td>126</td>
</tr>
<tr>
<td>11111100</td>
<td>125</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>000000011</td>
<td>-124</td>
</tr>
<tr>
<td>000000010</td>
<td>-125</td>
</tr>
<tr>
<td>000000001</td>
<td>-126</td>
</tr>
<tr>
<td>000000000</td>
<td>RESERVED</td>
</tr>
</tbody>
</table>
Exponent

- The exponent is **not** represented in two’s complement.
- Instead, exponents are sequentially represented starting from 000...1 (most negative) to 111...10 (most positive). This makes bit-level comparison fast.

Actual value = binary value – 127 ("bias")

<table>
<thead>
<tr>
<th>Exponent (8 bits)</th>
<th>Calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>11111110</td>
<td>254 – 127 = 127</td>
</tr>
<tr>
<td>11111101</td>
<td>253 – 127 = 126</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>00000010</td>
<td>2 – 127 = -125</td>
</tr>
<tr>
<td>00000001</td>
<td>1 – 127 = -126</td>
</tr>
</tbody>
</table>
• We could just encode whatever x is in the fraction field. But there’s a trick we can use to make the most out of the bits we have.
An Interesting Observation

In Base 10:
\[42.4 \times 10^5 = 4.24 \times 10^6 \]
\[324.5 \times 10^5 = 3.245 \times 10^7 \]
\[0.624 \times 10^5 = 6.24 \times 10^4 \]

In Base 2:
\[10.1 \times 2^5 = 1.01 \times 2^6 \]
\[1011.1 \times 2^5 = 1.0111 \times 2^8 \]
\[0.110 \times 2^5 = 1.10 \times 2^4 \]

We tend to adjust the exponent until we get down to one place to the left of the decimal point.

Observation: in base 2, this means there is always a 1 to the left of the decimal point!
We can adjust this value to fit the format described previously. Then, x will always be in the format $1.xxxxxxxxxx...$

Therefore, in the fraction portion, we can encode just what is to the right of the decimal point! This means we get one more digit for precision.

Value encoded = 1._[FRACTION BINARY DIGITS]_
<table>
<thead>
<tr>
<th>Sign</th>
<th>Exponent</th>
<th>Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Is this number:

A) Greater than 0?
B) Less than 0?

Is this number:

A) Less than -1?
B) Between -1 and 1?
C) Greater than 1?
• We said that it’s not possible to represent all real numbers using a fixed-width representation. What does this look like?

Float Converter
• https://www.h-schmidt.net/FloatConverter/IEEE754.html

Floats and Graphics
• https://www.shadertoy.com/view/4tVyDK
Let’s Get Real

What would be nice to have in a real number representation?

- Represent widest range of numbers possible
- Flexible “floating” decimal point
- Still be able to compare quickly
- Represent scientific notation numbers, e.g. 1.2×10^6
- Have more predictable overflow behavior
The float representation of zero is all zeros (with any value for the sign bit)

- This means there are two representations for zero! 😐

<table>
<thead>
<tr>
<th>Sign</th>
<th>Exponent</th>
<th>Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>any</td>
<td>All zeros</td>
<td>All zeros</td>
</tr>
</tbody>
</table>
Representing Small Numbers

If the exponent is all zeros, we switch into “denormalized” mode.

- We now treat the exponent as -126, and the fraction as *without* the leading 1.
- This allows us to represent the smallest numbers as precisely as possible.

<table>
<thead>
<tr>
<th>Sign</th>
<th>Exponent</th>
<th>Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>any</td>
<td>All zeros</td>
<td>Any</td>
</tr>
</tbody>
</table>
Representing Exceptional Values

If the exponent is all ones, and the fraction is all zeros, we have +/- infinity.

- The sign bit indicates whether it is positive or negative infinity.
- Floats have built-in handling of overflow!
 - Infinity + anything = infinity
 - Negative infinity + negative anything = negative infinity
 - Etc.

<table>
<thead>
<tr>
<th>Sign</th>
<th>Exponent</th>
<th>Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>any</td>
<td>All ones</td>
<td>All zeros</td>
</tr>
</tbody>
</table>
If the exponent is all ones, and the fraction is nonzero, we have **Not a Number**.

<table>
<thead>
<tr>
<th>Sign</th>
<th>Exponent</th>
<th>Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>any</td>
<td>1</td>
<td>...</td>
</tr>
</tbody>
</table>

- NaN results from computations that produce an invalid mathematical result.
- Square root of a negative
- Infinity / infinity
- Infinity + -infinity
- Etc.
Number Ranges

• 32-bit integer (type int):
 › -2,147,483,648 to 2,147,483,647

• 64-bit integer (type long):
 › -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

• 32-bit floating point (type float):
 • ~1.2 x 10^{-38} to ~3.4 x 10^{38}
 • Not all numbers in the range can be represented (not even all integers in the range can be represented!)
 • Gaps can get quite large! (larger the exponent, larger the gap between successive fraction values)

• 64-bit floating point (type double):
 • ~2.2 x 10^{-308} to ~1.8 x 10^{308}
Let’s Get Real

What would be nice to have in a real number representation?

✓ Represent widest range of numbers possible
✓ Flexible “floating” decimal point
✓ Still be able to compare quickly
✓ Represent scientific notation numbers, e.g. 1.2×10^6
✓ Have more predictable overflow behavior
Plan For Today

• Recap: Generics with Function Pointers
• Representing real numbers
• Fixed Point
• Break: Announcements
• Floating Point
• Floating Point Arithmetic
Nick’s Official Guide To Making Money

It’s easy!
Demo: Float Arithmetic
Introducing “Minifloat”

For a more compact example representation, we will use an 8 bit “minifloat” with a 4 bit exponent, 3 bit fraction and bias of 7 (note: minifloat is just for example purposes, and is not a real datatype).
Floating Point Arithmetic

In minifloat, with a balance of $128, a deposit of $4 **would not be recorded** at Nick’s Bank. Why not?

Let’s step through the calculations to add these two numbers (note: this is just for understanding; real float calculations are more efficient).
Floating Point Arithmetic

To add real numbers, we must align their binary points:

<table>
<thead>
<tr>
<th></th>
<th>128:</th>
<th>8:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1110</td>
<td>1001</td>
</tr>
<tr>
<td>32</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>000</td>
<td>000</td>
</tr>
</tbody>
</table>

What does 132.00 look like as a minifloat?
Step 1: convert from base 10 to binary

What is 132 in binary? \(\boxed{10000100} \)
Floating Point Arithmetic

Step 2: find how many places we need to shift **left** to put the number in 1.xxx format. This fills in the exponent component.

\[0b10000100 = 0b1.0000100 \times 2^7\]

\[7 + \text{bias of } 7 = 14 \text{ for minifloat exponent}\]

| 132: | ? | 1110 | ??? |
Floating Point Arithmetic

Step 3: take as many digits to the right of the binary decimal point as we can for the fractional component, rounding if needed.

$0b10000100 = 0b1.0000100 \times 2^7$

132: $? \underline{1110} \underline{000}$
Floating Point Arithmetic

Step 4: if the sign is positive, the sign bit is 0. Otherwise, it’s 1.

+132

Sign bit is 0.

132: 0 1110 000
The binary minifloat representation for 132 thus equals the following:

```
  0  1110  000
```

This is the same as the binary representation for 128 that we had before!

We didn’t have enough bits to differentiate between 128 and 132.
Another way to corroborate this: the *next-largest minifloat* that can be represented after 128 is **144**. 132 isn’t representable!

144: \[0\ 1110\ 001\]

\[= 1.125 \times 2^7\]

Key Idea: the smallest float hop increase we can take is incrementing the fractional component by 1.
Floating Point Arithmetic

Is this just overflowing? It turns out it’s more subtle.

```c
float a = 3.14;
float b = 1e20;
printf("(3.14 + 1e20) - 1e20 = %g\n", (a + b) - b);  // prints 0
printf("3.14 + (1e20 - 1e20) = %g\n", a + (b - b));  // prints 3.14
```

Floating point arithmetic is not associative. The order of operations matters!

- The first line loses precision when first adding 3.14 and 1e20, as we have seen.
- The second line first evaluates 1e20 – 1e20 = 0, and then adds 3.14
Demo: Float Equality

float_equality.c
Floating Point Arithmetic

Float arithmetic is an issue with most languages, not just C!

• http://geocar.sdf1.org/numbers.html
Let’s Get Real

What would be nice to have in a real number representation?

✓ Represent widest range of numbers possible
✓ Flexible “floating” decimal point
✓ Still be able to compare quickly
✓ Represent scientific notation numbers, e.g. 1.2×10^6
✓ Have more predictable overflow behavior
Floats Summary

• IEEE Floating Point is a carefully-thought-out standard. It’s complicated but engineered for their goals.

• Floats have an extremely wide range but cannot represent every number in that range.

• Some approximation and rounding may occur! This means you don’t want to use floats e.g. for currency.

• Associativity does not hold for numbers far apart in the range

• Equality comparison operations are often unwise.
Recap

• Recap: Generics with Function Pointers
• Representing real numbers
• Fixed Point

• Break: Announcements

• Floating Point
• Floating Point Arithmetic

Next time: assembly language