CS107 Fall 2019, Lecture 2
Bits and Bytes; Integer Representations

reading:
Bryant & O’Hallaron, Ch. 2.2-2.3
How are you feeling about Unix and C so far?
CS107 Topic 1: How can a computer represent integer numbers?
Demo: Unexpected Behavior

cp -r /afs/ir/class/cs107/samples/lectures/lect2 .
Plan For Today

• Bits and Bytes
• Hexadecimal
• Integer Representations
• Unsigned Integers
• **Break:** Announcements
• Signed Integers
• Overflow
Plan For Today

• Bits and Bytes
• Hexadecimal
• Integer Representations
• Unsigned Integers
• Break: Announcements
• Signed Integers
• Overflow
Computers are built around the idea of two states: “on” and “off”. Transistors represent this in hardware, and bits represent this in software!
One Bit At A Time

• We can combine bits, like with base-10 numbers, to represent more data. \(8\) bits = 1 byte.

• Computer memory is just a large array of bytes! It is byte-addressable; you can’t address (store location of) a bit; only a byte.

• Computers still fundamentally operate on bits; we have just gotten more creative about how to represent different data as bits!
 • Images
 • Audio
 • Video
 • Text
 • And more...
Base 10

5 9 3 4

Digits 0-9 (0 to base-1)
Base 10

5 9 3 4

thousands hundreds tens ones

= 5*1000 + 9*100 + 3*10 + 4*1
Base 10

5 9 3 4

10^3 10^2 10^1 10^0
Base 10

10^x: 3 2 1 0

5 9 3 4
Base 2

1011

2^x: 3 2 1 0

Digits 0-1 (0 to base-1)
Base 2

\[1011\]

\[2^3 \quad 2^2 \quad 2^1 \quad 2^0\]
Base 2

Most significant bit (MSB)

Least significant bit (LSB)

1 0 1 1

eights fours twos ones

= 1*8 + 0*4 + 1*2 + 1*1 = 11_{10}
Base 10 to Base 2

Question: What is 6 in base 2?

Strategy:
- What is the largest power of $2 \leq 6$?
Base 10 to Base 2

Question: What is 6 in base 2?

• Strategy:
 • What is the largest power of 2 ≤ 6? $2^2 = 4$

$$
\begin{array}{cccc}
0 & 1 & \underline{1} & \underline{1} \\
\underline{2^3} & \underline{2^2} & \underline{2^1} & \underline{2^0}
\end{array}
$$
Question: What is 6 in base 2?

• Strategy:
 • What is the largest power of 2 ≤ 6? $2^2=4$
 • Now, what is the largest power of 2 ≤ 6 − 2^2?
Question: What is 6 in base 2?

Strategy:
- What is the largest power of 2 ≤ 6? $2^2 = 4$
- Now, what is the largest power of 2 ≤ 6 − 2^2? $2^1 = 2$

$$
\begin{array}{cccc}
0 & 1 & 1 & \\
2^3 & 2^2 & 2^1 & 2^0
\end{array}
$$
Question: What is 6 in base 2?

• Strategy:
 • What is the largest power of 2 ≤ 6? $2^2 = 4$
 • Now, what is the largest power of 2 ≤ 6 – 2^2? $2^1 = 2$
 • $6 - 2^2 - 2^1 = 0!$

\[
\begin{array}{cccc}
0 & 1 & 1 & 1 \\
2^3 & 2^2 & 2^1 & 2^0 \\
\end{array}
\]
Question: What is 6 in base 2?

- Strategy:
 - What is the largest power of 2 ≤ 6? \(2^2 = 4\)
 - Now, what is the largest power of 2 ≤ 6 – 2^2? \(2^1 = 2\)
 - 6 – 2^2 – 2^1 = 0!

\[
\begin{array}{cccc}
0 & 1 & 1 & 0 \\
2^3 & 2^2 & 2^1 & 2^0
\end{array}
\]
Question: What is 6 in base 2?

• Strategy:
 • What is the largest power of 2 ≤ 6? \(2^2 = 4\)
 • Now, what is the largest power of 2 ≤ 6 − 2^2? \(2^1 = 2\)
 • \(6 − 2^2 − 2^1 = 0!\)

\[
\begin{array}{cccc}
0 & 1 & 1 & 0 \\
2^3 & 2^2 & 2^1 & 2^0 \\
\end{array}
\]

\[= 0 \times 8 + 1 \times 4 + 1 \times 2 + 0 \times 1 = 6\]
Practice: Base 2 to Base 10

What is the base-2 value 1010 in base-10?

a) 20 (text code: 704211)
b) 101 (text code: 704212)
c) 10 (text code: 704213)
d) 5 (text code: 704214)
e) Other (text code: 704215)

Respond at pollev.com/nicktroccoli901 or text a code above to 22333.
What is the base-2 value 1010 in base-10?

<table>
<thead>
<tr>
<th></th>
<th>704211</th>
<th>704212</th>
<th>704213</th>
<th>704214</th>
<th>704215</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20</td>
<td>101</td>
<td>10</td>
<td>5</td>
<td>Other</td>
</tr>
</tbody>
</table>
Practice: Base 10 to Base 2

What is the base-10 value 14 in base 2?

a) 1111 (text code: 704216)
b) 1110 (text code: 704217)
c) 1010 (text code: 704218)
d) Other (text code: 704219)

Respond at pollev.com/nicktroccoli901 or text a code above to 22333.
What is the base-10 value 14 in base-2?

<table>
<thead>
<tr>
<th>704216</th>
<th>704217</th>
<th>704218</th>
<th>704219</th>
</tr>
</thead>
<tbody>
<tr>
<td>1111</td>
<td>1110</td>
<td>1010</td>
<td>Other</td>
</tr>
</tbody>
</table>
Byte Values

• What is the minimum and maximum base-10 value a single byte (8 bits) can store?
What is the minimum and maximum base-10 value a single byte (8 bits) can store?

minimum = 0
maximum = ?
Byte Values

• What is the minimum and maximum base-10 value a single byte (8 bits) can store?
 \[\text{minimum} = 0 \quad \text{maximum} = ? \]
• What is the minimum and maximum base-10 value a single byte (8 bits) can store?
 \[\text{minimum} = 0 \quad \text{maximum} = ? \]

\[
\begin{align*}
2^7 & = 128 \\
2^6 & = 64 \\
2^5 & = 32 \\
2^4 & = 16 \\
2^3 & = 8 \\
2^2 & = 4 \\
2^1 & = 2 \\
2^0 & = 1 \\
\end{align*}
\]

\[
\begin{align*}
1 \times 2^7 + 1 \times 2^6 + 1 \times 2^5 + 1 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 & = 255 \\
n & = 11111111_2 \\
\end{align*}
\]

• **Strategy 1:** \[1 \times 2^7 + 1 \times 2^6 + 1 \times 2^5 + 1 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 = 255 \]
Byte Values

• What is the minimum and maximum base-10 value a single byte (8 bits) can store? minimum = 0 maximum = 255

• Strategy 1: \(1 \times 2^7 + 1 \times 2^6 + 1 \times 2^5 + 1 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 = 255\)

• Strategy 2: \(2^8 - 1 = 255\)
Multiplying by Base

\[1450 \times 10 = 14500\]

\[1100_2 \times 2 = 11000_2\]

Key Idea: inserting 0 at the end multiplies by the base!
Dividing by Base

1450 \div 10 = 145
1100_2 \div 2 = 110

Key Idea: removing 0 at the end divides by the base!
Plan For Today

• Bits and Bytes
• **Hexadecimal**
• Integer Representations
• Unsigned Integers
• **Break**: Announcements
• Signed Integers
• Overflow
When working with bits, oftentimes we have large numbers with 32 or 64 bits. Instead, we’ll represent bits in base-16 instead; this is called **hexadecimal**.
Hexadecimal

- When working with bits, oftentimes we have large numbers with 32 or 64 bits.
- Instead, we’ll represent bits in *base-16 instead*; this is called **hexadecimal**.

Each is a base-16 digit!
Hexadecimal

• Hexadecimal is *base-16*, so we need digits for 1-15. How do we do this?

0 1 2 3 4 5 6 7 8 9 a b c d e f 10 11 12 13 14 15
Hexadecimal

<table>
<thead>
<tr>
<th>Hex digit</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decimal value</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Binary value</td>
<td>0000</td>
<td>0001</td>
<td>0010</td>
<td>0011</td>
<td>0100</td>
<td>0101</td>
<td>0110</td>
<td>0111</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hex digit</th>
<th>8</th>
<th>9</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decimal value</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>Binary value</td>
<td>1000</td>
<td>1001</td>
<td>1010</td>
<td>1011</td>
<td>1100</td>
<td>1101</td>
<td>1110</td>
<td>1111</td>
</tr>
</tbody>
</table>
Hexadecimal

- We distinguish hexadecimal numbers by prefixing them with `0x`, and binary numbers with `0b`.
- E.g. `0xf5` is `0b11110101`
What is **0x173A** in binary?

<table>
<thead>
<tr>
<th>Hexadecimal</th>
<th>1</th>
<th>7</th>
<th>3</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binary</td>
<td>0001</td>
<td>0111</td>
<td>0011</td>
<td>1010</td>
</tr>
</tbody>
</table>
What is $0b1111001010$ in hexadecimal? (*Hint: start from the right*)

<table>
<thead>
<tr>
<th>Binary</th>
<th>11</th>
<th>1100</th>
<th>1010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hexadecimal</td>
<td>3</td>
<td>C</td>
<td>A</td>
</tr>
</tbody>
</table>
Plan For Today

• Bits and Bytes
• Hexadecimal
• **Integer Representations**
• Unsigned Integers
• **Break**: Announcements
• Signed Integers
• Overflow
Number Representations

• **Unsigned Integers**: positive and 0 integers. (e.g. 0, 1, 2, ... 99999...

• **Signed Integers**: negative, positive and 0 integers. (e.g. ...-2, -1, 0, 1,... 9999...)

• **Floating Point Numbers**: real numbers. (e.g. 0.1, -12.2, 1.5x10^{12})
Number Representations

- **Unsigned Integers**: positive and 0 integers. (e.g. 0, 1, 2, ... 99999...)
- **Signed Integers**: negative, positive and 0 integers. (e.g. ...-2, -1, 0, 1,... 9999...)
- **Floating Point Numbers**: real numbers. (e.g. 0.1, -12.2, 1.5x10^{12})

Stay tuned until week 5!
Number Representations

<table>
<thead>
<tr>
<th>C Declaration</th>
<th>Size (Bytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>int</td>
<td>4</td>
</tr>
<tr>
<td>double</td>
<td>8</td>
</tr>
<tr>
<td>float</td>
<td>4</td>
</tr>
<tr>
<td>char</td>
<td>1</td>
</tr>
<tr>
<td>char *</td>
<td>8</td>
</tr>
<tr>
<td>short</td>
<td>2</td>
</tr>
<tr>
<td>long</td>
<td>8</td>
</tr>
</tbody>
</table>
In The Days Of Yore…

<table>
<thead>
<tr>
<th>C Declaration</th>
<th>Size (Bytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>int</td>
<td>4</td>
</tr>
<tr>
<td>double</td>
<td>8</td>
</tr>
<tr>
<td>float</td>
<td>4</td>
</tr>
<tr>
<td>char</td>
<td>1</td>
</tr>
<tr>
<td>char *</td>
<td>4</td>
</tr>
<tr>
<td>short</td>
<td>2</td>
</tr>
<tr>
<td>long</td>
<td>4</td>
</tr>
</tbody>
</table>
Transitioning To Larger Datatypes

• Early 2000s: most computers were 32-bit. This means that pointers were 4 bytes (32 bits).

• 32-bit pointers store a memory address from 0 to $2^{32}-1$, equaling 2^{32} bytes of addressable memory. This equals 4 Gigabytes, meaning that 32-bit computers could have at most 4GB of memory (RAM)!

• Because of this, computers transitioned to 64-bit. This means that datatypes were enlarged; pointers in programs were now 64 bits.

• 64-bit pointers store a memory address from 0 to $2^{64}-1$, equaling 2^{64} bytes of addressable memory. This equals 16 Exabytes, meaning that 64-bit computers could have at most $1024*1024*1024$ GB of memory (RAM)!
Plan For Today

• Bits and Bytes
• Hexadecimal
• Integer Representations
• **Unsigned Integers**
• **Break:** Announcements
• Signed Integers
• Overflow
Unsigned Integers

• An **unsigned** integer is 0 or a positive integer (no negatives).

• We have already discussed converting between decimal and binary, which is a nice 1:1 relationship. Examples:

 0b0001 = 1
 0b0101 = 5
 0b1011 = 11
 0b1111 = 15

• The range of an unsigned number is $0 \rightarrow 2^w - 1$, where w is the number of bits. E.g. a 32-bit integer can represent 0 to $2^{32} - 1$ (4,294,967,295).
Unsigned Integers

4-bit unsigned integer representation

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Plan For Today

• Bits and Bytes
• Hexadecimal
• Integer Representations
• Unsigned Integers
• **Break:** Announcements
• Signed Integers
• Overflow
Announcements

• Sign up for Piazza on the Help page if you haven’t already!
• Lab signups opened earlier today, start next week.
 • Lab materials posted on the course website at the start of each week
• Helper Hours started earlier this week
 • You must fill out signup questions completely when signing up
• Please send course staff OAE letters for accommodations!
• CURIS Poster Session today 3-5PM on Packard Lawn
A **signed** integer is a negative, 0, or positive integer. How can we represent both negative and positive numbers in binary?
Plan For Today

- Bits and Bytes
- Hexadecimal
- Integer Representations
- Unsigned Integers
- **Break**: Announcements
- **Signed Integers**
- Overflow
Signed Integers

• A signed integer is a negative integer, 0, or a positive integer.
• Problem: How can we represent negative and positive numbers in binary?
Signed Integers

- A **signed** integer is a negative integer, 0, or a positive integer.
- *Problem:* How can we represent negative *and* positive numbers in binary?

Idea: let’s reserve the **most significant bit** to store the sign.
Sign Magnitude Representation

0110

positive 6

1011

negative 3
Sign Magnitude Representation

0000
positive 0

1000
negative 0
Sign Magnitude Representation

<table>
<thead>
<tr>
<th>Binary</th>
<th>Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>-0</td>
</tr>
<tr>
<td>1001</td>
<td>-1</td>
</tr>
<tr>
<td>1010</td>
<td>-2</td>
</tr>
<tr>
<td>1011</td>
<td>-3</td>
</tr>
<tr>
<td>1100</td>
<td>-4</td>
</tr>
<tr>
<td>1101</td>
<td>-5</td>
</tr>
<tr>
<td>1110</td>
<td>-6</td>
</tr>
<tr>
<td>1111</td>
<td>-7</td>
</tr>
</tbody>
</table>

- We’ve only represented 15 of our 16 available numbers!
Sign Magnitude Representation

• **Pro:** easy to represent, and easy to convert to/from decimal.
• **Con:** +-0 is not intuitive
• **Con:** we lose a bit that could be used to store more numbers
• **Con:** arithmetic is tricky: we need to find the sign, then maybe subtract (borrow and carry, etc.), then maybe change the sign...this might get ugly!

Can we do better?
A Better Idea

• Ideally, binary addition would just work regardless of whether the number is positive or negative.

\[
\begin{array}{c}
0101 \\
+ ???? \\
\hline
0000
\end{array}
\]
A Better Idea

• Ideally, binary addition would *just work regardless* of whether the number is positive or negative.

```
  0101
+1011
```

```
00000
```
• Ideally, binary addition would *just work regardless* of whether the number is positive or negative.
A Better Idea

• Ideally, binary addition would *just work regardless* of whether the number is positive or negative.

\[
\begin{array}{c}
0011 \\
+1101 \\
\hline
0000
\end{array}
\]
Ideally, binary addition would *just work regardless* of whether the number is positive or negative.

```
0000
+????
-----
00000
```
• Ideally, binary addition would *just work regardless* of whether the number is positive or negative.
A Better Idea

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Positive</th>
<th>Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000</td>
<td>0000</td>
</tr>
<tr>
<td>1</td>
<td>0001</td>
<td>1111</td>
</tr>
<tr>
<td>2</td>
<td>0010</td>
<td>1110</td>
</tr>
<tr>
<td>3</td>
<td>0011</td>
<td>1101</td>
</tr>
<tr>
<td>4</td>
<td>0100</td>
<td>1100</td>
</tr>
<tr>
<td>5</td>
<td>0101</td>
<td>1011</td>
</tr>
<tr>
<td>6</td>
<td>0110</td>
<td>1010</td>
</tr>
<tr>
<td>7</td>
<td>0111</td>
<td>1001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Positive</th>
<th>Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>9</td>
<td>1001 (same as -7!)</td>
<td>NA</td>
</tr>
<tr>
<td>10</td>
<td>1010 (same as -6!)</td>
<td>NA</td>
</tr>
<tr>
<td>11</td>
<td>1011 (same as -5!)</td>
<td>NA</td>
</tr>
<tr>
<td>12</td>
<td>1100 (same as -4!)</td>
<td>NA</td>
</tr>
<tr>
<td>13</td>
<td>1101 (same as -3!)</td>
<td>NA</td>
</tr>
<tr>
<td>14</td>
<td>1110 (same as -2!)</td>
<td>NA</td>
</tr>
<tr>
<td>15</td>
<td>1111 (same as -1!)</td>
<td>NA</td>
</tr>
</tbody>
</table>
There Seems Like a Pattern Here...

- The negative number is the positive number *inverted, plus one!*

\[
\begin{array}{c c c}
0101 & 0011 & 0000 \\
1011 & 1101 & 0000 \\
0000 & 0000 & 0000 \\
\hline
0000 & 0000 & 0000
\end{array}
\]
There Seems Like a Pattern Here…

A binary number plus its inverse is all 1s.

\[
\begin{array}{c}
0101 \\
+1010 \\
\hline
1111
\end{array}
\]

Add 1 to this to carry over all 1s and get 0!

\[
\begin{array}{c}
1111 \\
+0001 \\
\hline
0000
\end{array}
\]
Another Trick

• To find the negative equivalent of a number, work right-to-left and write down all digits *through* when you reach a 1. Then, invert the rest of the digits.

\[
\begin{array}{c}
100100 \\
\end{array}
\]

\[
\begin{array}{c}
000000
\end{array}
\]
Another Trick

• To find the negative equivalent of a number, work right-to-left and write down all digits *through* when you reach a 1. Then, invert the rest of the digits.

100100

+ ???100

0000000
Another Trick

• To find the negative equivalent of a number, work right-to-left and write down all digits *through* when you reach a 1. Then, invert the rest of the digits.

\[
\begin{array}{c}
100100 \\
+ 011100 \\
\hline
0000000
\end{array}
\]
Two’s Complement

4-bit two's complement signed integer representation

-8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6
Two’s Complement

• In **two’s complement**, we represent a positive number as **itself**, and its negative equivalent as the **two’s complement of itself**.

• The **two’s complement** of a number is the binary digits inverted, plus 1.

• This works to convert from positive to negative, and back from negative to positive!
Two’s Complement

- **Con:** more difficult to represent, and difficult to convert to/from decimal and between positive and negative.
- **Pro:** only 1 representation for 0!
- **Pro:** all bits are used to represent as many numbers as possible
- **Pro:** it turns out that the most significant bit *still indicates the sign* of a number.
- **Pro:** arithmetic is easy: we just add!
Two’s Complement

• Adding two numbers is just...adding! There is no special case needed for negatives. E.g. what is $2 + -5$?

\[
\begin{array}{c}
0010 \\
+1011 \\
\hline
1101
\end{array}
\]

$2 + -5 = -3$
Two’s Complement

- Subtracting two numbers is just performing the two’s complement on one of them and then adding. E.g. $4 - 5 = -1$.

\[
\begin{array}{cccccc}
0100 & 4 & \rightarrow & 0100 & 4 \\
-0101 & 5 & \rightarrow & \text{+1011} & \text{-5} \\
\hline
\text{1111} & \text{-1} \\
\end{array}
\]
While you don’t need to worry about multiplication, it turns out that with two’s complement, multiplying two numbers is just multiplying, and discarding overflow digits! E.g. \(-2 \times -3 = 6\).

\[
\begin{array}{c}
1110 \quad \text{(} -2 \text{)} \\
\times 1101 \quad \text{(} -3 \text{)} \\
\hline
1110 \\
0000 \\
1110 \\
+1110 \\
\hline
10110110 \quad \text{(} 6 \text{)}
\end{array}
\]
Practice: Two’s Complement

What are the negative or positive equivalents of the numbers below?

a) -4 (1100)
b) 7 (0111)
c) 3 (0011)
d) -8 (1000)
Practice: Two’s Complement

What are the negative or positive equivalents of the numbers below?

a) -4 (1100)

b) 7 (0111)

c) 3 (0011)

d) -8 (1000)
Plan For Today

• Bits and Bytes
• Hexadecimal
• Integer Representations
• Unsigned Integers
• **Break:** Announcements
• Signed Integers
• **Overflow**
Overflow

• If you exceed the maximum value of your bit representation, you wrap around or overflow back to the smallest bit representation.

$$0b1111 + 0b1 = 0b0000$$

• If you go below the minimum value of your bit representation, you wrap around or overflow back to the largest bit representation.

$$0b0000 - 0b1 = 0b1111$$
Min and Max Integer Values

<table>
<thead>
<tr>
<th>Type</th>
<th>Size (Bytes)</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>char</td>
<td>1</td>
<td>-128</td>
<td>127</td>
</tr>
<tr>
<td>unsigned char</td>
<td>1</td>
<td>0</td>
<td>255</td>
</tr>
<tr>
<td>short</td>
<td>2</td>
<td>-32768</td>
<td>32767</td>
</tr>
<tr>
<td>unsigned short</td>
<td>2</td>
<td>0</td>
<td>65535</td>
</tr>
<tr>
<td>int</td>
<td>4</td>
<td>-2147483648</td>
<td>2147483647</td>
</tr>
<tr>
<td>unsigned int</td>
<td>4</td>
<td>0</td>
<td>4294967295</td>
</tr>
<tr>
<td>long</td>
<td>8</td>
<td>-9223372036854775808</td>
<td>9223372036854775807</td>
</tr>
<tr>
<td>unsigned long</td>
<td>8</td>
<td>0</td>
<td>18446744073709551615</td>
</tr>
</tbody>
</table>
Min and Max Integer Values

INT_MIN, INT_MAX, UINT_MAX, LONG_MIN, LONG_MAX, ULONG_MAX, …
Overflow
At which points can overflow occur for signed and unsigned int? (assume binary values shown are all 32 bits)

A. Signed and unsigned can both overflow at points X and Y
B. Signed can overflow only at X, unsigned only at Y
C. Signed can overflow only at Y, unsigned only at X
D. Signed can overflow at X and Y, unsigned only at X
E. Other
Unsigned Integers

Approximately 4 billion

Discontinuity means overflow possible here

Increasing positive numbers

More increasing positive numbers

000...000
000...001
000...010
000...011
011...010
011...001
011...110
011...111
100...010
100...001
100...000
111...110
111...101
111...100
111...111
0

Increasing positive numbers
Signed Numbers

Discontinuity means overflow possible here

Increasing positive numbers

Negative numbers becoming less negative (i.e. increasing)

≈-2billion

≈+2billion
Overflow In Practice: PSY

YouTube: “We never thought a video would be watched in numbers greater than a 32-bit integer (=2,147,483,647 views), but that was before we met PSY. "Gangnam Style" has been viewed so many times we had to upgrade to a 64-bit integer (9,223,372,036,854,775,808)!”
Overflow In Practice: Timestamps

• Many systems store timestamps as **the number of seconds since Jan. 1, 1970** in a **signed 32-bit integer**.

• **Problem:** the latest timestamp that can be represented this way is 3:14:07 UTC on Jan. 13 2038!
Overflow In Practice: Gandhi

• In the game “Civilization”, each civilization leader had an “aggression” rating. Gandhi was meant to be peaceful, and had a score of 1.
• If you adopted “democracy”, all players’ aggression reduced by 2. Gandhi’s went from 1 to 255!
• Gandhi then became a big fan of nuclear weapons.

https://kotaku.com/why-gandhi-is-such-an-asshole-in-civilization-1653818245
Overflow in Practice:

- **Pacman Level 256**
- Make sure to reboot Boeing Dreamliners *every 248 days*
- Comair/Delta airline had to cancel thousands of flights days before Christmas
- Reported vulnerability **CVE-2019-3857** in libssh2 may allow a hacker to remotely execute code
- **Donkey Kong Kill Screen**
Recap

• Bits and Bytes
• Hexadecimal
• Integer Representations
• Unsigned Integers
• Break: Announcements
• Signed Integers
• Overflow

Next time: How can we manipulate individual bits and bytes?
Overflow Slides
Recap

• Bits and Bytes
• Hexadecimal
• Integer Representations
• Unsigned Integers
• **Break**: Announcements
• Signed Integers
• Overflow
• **Casting and Combining Types**
There are 3 placeholders for 32-bit integers that we can use:
• %d: signed 32-bit int
• %u: unsigned 32-bit int
• %x: hex 32-bit int

As long as the value is a 32-bit type, printf will treat it according to the placeholder!
Casting

- What happens at the byte level when we cast between variable types? **The bytes remain the same!** *This means they may be interpreted differently depending on the type.*

```c
int v = -12345;
unsigned int uv = v;
printf("v = %d, uv = %u\n", v, uv);
```

This prints out: "v = -12345, uv = 4294954951". **Why?**
Casting

• What happens at the byte level when we cast between variable types? The bytes remain the same! This means they may be interpreted differently depending on the type.

```c
int v = -12345;
unsigned int uv = v;
printf("v = %d, uv = %u\n", v, uv);
```

The bit representation for -12345 is `0b11000000111001`. If we treat this binary representation as a positive number, it’s huge!
Casting

4-bit two's complement signed integer representation

4-bit unsigned integer representation
Comparisons Between Different Types

- **Be careful** when comparing signed and unsigned integers. **C will implicitly cast** the signed argument to unsigned, and then performs the operation assuming both numbers are non-negative.

<table>
<thead>
<tr>
<th>Expression</th>
<th>Type</th>
<th>Evaluation</th>
<th>Correct?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 == 0U</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1 < 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1 < 0U</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2147483647 > -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2147483647 - 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2147483647U > -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2147483647 - 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2147483647 > (int)2147483648U</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1 > -2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(unsigned)-1 > -2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Comparisons Between Different Types

- **Be careful** when comparing signed and unsigned integers. C will implicitly **cast** the signed argument to unsigned, and then performs the operation assuming both numbers are non-negative.

<table>
<thead>
<tr>
<th>Expression</th>
<th>Type</th>
<th>Evaluation</th>
<th>Correct?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 == 0U</td>
<td>Unsigned</td>
<td>1</td>
<td>yes</td>
</tr>
<tr>
<td>-1 < 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1 < 0U</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2147483647 > -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2147483647 - 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2147483647U > -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2147483647 - 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2147483647 > (int)2147483648U</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1 > -2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(unsigned)-1 > -2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Comparisons Between Different Types

Be careful when comparing signed and unsigned integers. **C will implicitly cast** the signed argument to unsigned, and then performs the operation assuming both numbers are non-negative.

<table>
<thead>
<tr>
<th>Expression</th>
<th>Type</th>
<th>Evaluation</th>
<th>Correct?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 == 0U</td>
<td>Unsigned</td>
<td>1</td>
<td>yes</td>
</tr>
<tr>
<td>-1 < 0</td>
<td>Signed</td>
<td>1</td>
<td>yes</td>
</tr>
<tr>
<td>-1 < 0U</td>
<td>Unsigned</td>
<td>1</td>
<td>yes</td>
</tr>
<tr>
<td>2147483647 > -1</td>
<td>Signed</td>
<td>1</td>
<td>yes</td>
</tr>
<tr>
<td>2147483647U > -1</td>
<td>Unsigned</td>
<td>1</td>
<td>yes</td>
</tr>
<tr>
<td>2147483647 > (int)2147483648U</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1 > -2</td>
<td>(unsigned)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(unsigned)-1 > -2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Comparisons Between Different Types

- **Be careful** when comparing signed and unsigned integers. **C will implicitly cast** the signed argument to unsigned, and then performs the operation assuming both numbers are non-negative.

<table>
<thead>
<tr>
<th>Expression</th>
<th>Type</th>
<th>Evaluation</th>
<th>Correct?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 == 0U</td>
<td>Unsigned</td>
<td>1</td>
<td>yes</td>
</tr>
<tr>
<td>-1 < 0</td>
<td>Signed</td>
<td>1</td>
<td>yes</td>
</tr>
<tr>
<td>-1 < 0U</td>
<td>Unsigned</td>
<td>0</td>
<td>No!</td>
</tr>
</tbody>
</table>
| 2147483647 > -
 2147483647 - 1 | | | |
| 2147483647U > -
 2147483647 - 1 | | | |
| 2147483647 >
 (int)2147483648U | | | |
| -1 > -2 | | | |
| (unsigned)-1 > -2 | | | |
Comparisons Between Different Types

• **Be careful** when comparing signed and unsigned integers. **C will implicitly cast** the signed argument to unsigned, and then performs the operation assuming both numbers are non-negative.

<table>
<thead>
<tr>
<th>Expression</th>
<th>Type</th>
<th>Evaluation</th>
<th>Correct?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 == 0U</td>
<td>Unsigned</td>
<td>1</td>
<td>yes</td>
</tr>
<tr>
<td>-1 < 0</td>
<td>Signed</td>
<td>1</td>
<td>yes</td>
</tr>
<tr>
<td>-1 < 0U</td>
<td>Unsigned</td>
<td>0</td>
<td>No!</td>
</tr>
<tr>
<td>2147483647 > -2147483647 - 1</td>
<td>Signed</td>
<td>1</td>
<td>yes</td>
</tr>
<tr>
<td>2147483647U > -2147483647 - 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2147483647 > (int)2147483648U</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1 > -2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(unsigned)-1 > -2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Be careful when comparing signed and unsigned integers. C will implicitly cast the signed argument to unsigned, and then performs the operation assuming both numbers are non-negative.

<table>
<thead>
<tr>
<th>Expression</th>
<th>Type</th>
<th>Evaluation</th>
<th>Correct?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 == 0U</td>
<td>Unsigned</td>
<td>1</td>
<td>yes</td>
</tr>
<tr>
<td>-1 < 0</td>
<td>Signed</td>
<td>1</td>
<td>yes</td>
</tr>
<tr>
<td>-1 < 0U</td>
<td>Unsigned</td>
<td>0</td>
<td>No!</td>
</tr>
<tr>
<td>2147483647 > -2147483647 - 1</td>
<td>Signed</td>
<td>1</td>
<td>yes</td>
</tr>
<tr>
<td>2147483647U > -2147483647 - 1</td>
<td>Unsigned</td>
<td>0</td>
<td>No!</td>
</tr>
<tr>
<td>2147483647 > (int)2147483648U</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1 > -2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(unsigned)-1 > -2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Comparisons Between Different Types

- **Be careful** when comparing signed and unsigned integers. **C will implicitly cast** the signed argument to unsigned, and then performs the operation assuming both numbers are non-negative.

<table>
<thead>
<tr>
<th>Expression</th>
<th>Type</th>
<th>Evaluation</th>
<th>Correct?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 == 0U</td>
<td>Unsigned</td>
<td>1</td>
<td>yes</td>
</tr>
<tr>
<td>-1 < 0</td>
<td>Signed</td>
<td>1</td>
<td>yes</td>
</tr>
<tr>
<td>-1 < 0U</td>
<td>Unsigned</td>
<td>0</td>
<td>No!</td>
</tr>
<tr>
<td>2147483647 > -2147483647 - 1</td>
<td>Signed</td>
<td>1</td>
<td>yes</td>
</tr>
<tr>
<td>2147483647U > -2147483647 - 1</td>
<td>Unsigned</td>
<td>0</td>
<td>No!</td>
</tr>
<tr>
<td>2147483647 > (int)2147483648U</td>
<td>Signed</td>
<td>1</td>
<td>No!</td>
</tr>
<tr>
<td>-1 > -2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(unsigned)-1 > -2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Comparisons Between Different Types

- **Be careful** when comparing signed and unsigned integers. **C will implicitly cast** the signed argument to unsigned, and then performs the operation assuming both numbers are non-negative.

<table>
<thead>
<tr>
<th>Expression</th>
<th>Type</th>
<th>Evaluation</th>
<th>Correct?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 == 0U</td>
<td>Unsigned</td>
<td>1</td>
<td>yes</td>
</tr>
<tr>
<td>-1 < 0</td>
<td>Signed</td>
<td>1</td>
<td>yes</td>
</tr>
<tr>
<td>-1 < 0U</td>
<td>Unsigned</td>
<td>0</td>
<td>No!</td>
</tr>
<tr>
<td>2147483647 > -</td>
<td>Signed</td>
<td>1</td>
<td>yes</td>
</tr>
<tr>
<td>2147483647 - 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2147483647U > -</td>
<td>Unsigned</td>
<td>0</td>
<td>No!</td>
</tr>
<tr>
<td>2147483647 - 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(int)2147483648U</td>
<td>Signed</td>
<td>1</td>
<td>No!</td>
</tr>
<tr>
<td>-1 > -2</td>
<td>Signed</td>
<td>1</td>
<td>yes</td>
</tr>
<tr>
<td>(unsigned)-1 > -2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Comparisons Between Different Types

- **Be careful** when comparing signed and unsigned integers. **C will implicitly cast** the signed argument to unsigned, and then performs the operation assuming both numbers are non-negative.

<table>
<thead>
<tr>
<th>Expression</th>
<th>Type</th>
<th>Evaluation</th>
<th>Correct?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 == 0U</td>
<td>Unsigned</td>
<td>1</td>
<td>yes</td>
</tr>
<tr>
<td>-1 < 0</td>
<td>Signed</td>
<td>1</td>
<td>yes</td>
</tr>
<tr>
<td>-1 < 0U</td>
<td>Unsigned</td>
<td>0</td>
<td>No!</td>
</tr>
<tr>
<td>2147483647 > -2147483647 - 1</td>
<td>Signed</td>
<td>1</td>
<td>yes</td>
</tr>
<tr>
<td>2147483647U > -2147483647 - 1</td>
<td>Unsigned</td>
<td>0</td>
<td>No!</td>
</tr>
<tr>
<td>2147483647 > (int)2147483648U</td>
<td>Signed</td>
<td>1</td>
<td>No!</td>
</tr>
<tr>
<td>-1 > -2</td>
<td>Signed</td>
<td>1</td>
<td>yes</td>
</tr>
<tr>
<td>(unsigned)-1 > -2</td>
<td>Unsigned</td>
<td>1</td>
<td>yes</td>
</tr>
</tbody>
</table>
Comparisons Between Different Types

Which many of the following statements are true? *(assume that variables are set to values that place them in the spots shown)*

- $s_3 > u_3$
- $u_2 > u_4$
- $s_2 > s_4$
- $s_1 > s_2$
- $u_1 > u_2$
- $s_1 > u_3$
Which many of the following statements are true? *(assume that variables are set to values that place them in the spots shown)*

- \(s_3 > u_3 \) - true
- \(u_2 > u_4 \)
- \(s_2 > s_4 \)
- \(s_1 > s_2 \)
- \(u_1 > u_2 \)
- \(s_1 > u_3 \)
Which many of the following statements are true? *(assume that variables are set to values that place them in the spots shown)*

- $s_3 > u_3$ - true
- $u_2 > u_4$ - true
- $s_2 > s_4$
- $s_1 > s_2$
- $u_1 > u_2$
- $s_1 > u_3$
Comparisons Between Different Types

Which many of the following statements are true? (assume that variables are set to values that place them in the spots shown)

s3 > u3 - true
u2 > u4 - true
s2 > s4 - false
s1 > s2
u1 > u2
s1 > u3
Which many of the following statements are true? (assume that variables are set to values that place them in the spots shown)

- $s_3 > u_3$ - true
- $u_2 > u_4$ - true
- $s_2 > s_4$ - false
- $s_1 > s_2$ - true
- $u_1 > u_2$
- $s_1 > u_3$
Which many of the following statements are true? *(assume that variables are set to values that place them in the spots shown)*

- $s_3 > u_3$ - true
- $u_2 > u_4$ - true
- $s_2 > s_4$ - false
- $s_1 > s_2$ - true
- $u_1 > u_2$ - true
- $s_1 > u_3$
Which many of the following statements are true? *(assume that variables are set to values that place them in the spots shown)*

- $s_3 > u_3$ - true
- $u_2 > u_4$ - true
- $s_2 > s_4$ - false
- $s_1 > s_2$ - true
- $u_1 > u_2$ - true
- $s_1 > u_3$ - true
Expanding Bit Representations

- Sometimes, we want to convert between two integers of different sizes (e.g. `short` to `int`, or `int` to `long`).

- We might not be able to convert from a bigger data type to a smaller data type, but we do want to always be able to convert from a **smaller** data type to a **bigger** data type.

- For **unsigned** values, we can add *leading zeros* to the representation (“zero extension”)

- For **signed** values, we can *repeat the sign of the value* for new digits (“sign extension”)

- Note: when doing `<`, `>`, `<=`, `>=` comparison between different size types, it will **promote to the larger type**.
unsigned short s = 4;
// short is a 16-bit format, so s = 0000 0000 0000 0100b

unsigned int i = s;
// conversion to 32-bit int, so i = 0000 0000 0000 0000 0000 0000 0000 0100b
short s = 4;
// short is a 16-bit format, so

s = 0000 0000 0000 0100b

int i = s;
// conversion to 32-bit int, so

i = 0000 0000 0000 0000 0000 0000 0000 0100b

— or —

short s = -4;
// short is a 16-bit format, so

s = 1111 1111 1111 1100b

int i = s;
// conversion to 32-bit int, so

i = 1111 1111 1111 1111 1111 1111 1111 1100b
Truncating Bit Representation

If we want to **reduce** the bit size of a number, C *truncates* the representation and discards the *more significant bits*.

```c
int x = 53191;
short sx = x;
int y = sx;
```

What happens here? Let's look at the bits in `x` (a 32-bit int), 53191:

```
0000 0000 0000 0000 1100 1111 1100 0111
```

When we cast `x` to a short, it only has 16-bits, and C *truncates* the number:

```
1100 1111 1100 0111
```

This is -12345! And when we cast `sx` back an int, we sign-extend the number.

```
1111 1111 1111 1111 1100 1111 1100 0111  // still -12345
```
If we want to **reduce** the bit size of a number, C **truncates** the representation and discards the *more significant bits*.

```
int x = -3;
short sx = x;
int y = sx;
```

What happens here? Let's look at the bits in `x` (a 32-bit int), -3:

```
1111 1111 1111 1111 1111 1111 1111 1101
```

When we cast `x` to a short, it only has 16-bits, and C **truncates** the number:

```
1111 1111 1111 1101
```

This is -3! **If the number does fit, it will convert fine.** `y` looks like this:

```
1111 1111 1111 1111 1111 1111 1111 1101  // still -3
```
If we want to **reduce** the bit size of a number, C **truncates** the representation and discards the *more significant bits*.

```c
unsigned int x = 128000;
unsigned short sx = x;
unsigned int y = sx;
```

What happens here? Let's look at the bits in `x` (a 32-bit unsigned int), 128000:

```
0000 0000 0000 0001 1111 0100 0000 0000
```

When we cast `x` to a short, it only has 16-bits, and C **truncates** the number:

```
1111 0100 0000 0000
```

This is 62464! **Unsigned numbers can lose info too.** Here is what `y` looks like:

```
0000 0000 0000 0000 1111 0100 0000 0000 // still 62464
```
The sizeof Operator

long sizeof(type);

// Example
long int_size_bytes = sizeof(int); // 4
long short_size_bytes = sizeof(short); // 2
long char_size_bytes = sizeof(char); // 1

sizeof takes a variable type as a parameter and returns the size of that type, in bytes.