CS107 Fall 2019, Lecture 3
Bits and Bytes; Bitwise Operators

reading:
Bryant & O’Hallaron, Ch. 2.1
Plan For Today

• Recap: Integer Representations
• Truncating and Expanding
• Bitwise Operators and Masks
• Demo 1: Courses
• Break: Announcements
• Demo 2: Powers of 2
• Bit Shift Operators
Plan For Today

• Recap: Integer Representations
• Truncating and Expanding
• Bitwise Operators and Masks
• Demo 1: Courses
• Break: Announcements
• Demo 2: Powers of 2
• Bit Shift Operators
Base 2

1 0 1 1

$2^3 \quad 2^2 \quad 2^1 \quad 2^0$
Hexadecimal

<table>
<thead>
<tr>
<th>Hex digit</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decimal value</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Binary value</td>
<td>0000</td>
<td>0001</td>
<td>0010</td>
<td>0011</td>
<td>0100</td>
<td>0101</td>
<td>0110</td>
<td>0111</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hex digit</th>
<th>8</th>
<th>9</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decimal value</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>Binary value</td>
<td>1000</td>
<td>1001</td>
<td>1010</td>
<td>1011</td>
<td>1100</td>
<td>1101</td>
<td>1110</td>
<td>1111</td>
</tr>
</tbody>
</table>
Unsigned Integers

4-bit unsigned integer representation
Two’s Complement

• In two’s complement, we represent a positive number as itself, and its negative equivalent as the two’s complement of itself.

• The two’s complement of a number is the binary digits inverted, plus 1.

• This works to convert from positive to negative, and back from negative to positive!
Overflow

• If you exceed the **maximum** value of your bit representation, you *wrap around* or *overflow* back to the **smallest** bit representation.

\[0b1111 + 0b1 = 0b0000 \]

• If you go below the **minimum** value of your bit representation, you *wrap around* or *overflow* back to the **largest** bit representation.

\[0b0000 - 0b1 = 0b1111 \]
Unsigned Integers

≈+4 billion

Discontinuity means overflow possible here

Increasing positive numbers

More increasing positive numbers
Signed Numbers

Discontinuity means overflow possible here

Increasing positive numbers

Negative numbers becoming less negative (i.e. increasing)

≈+2billion

≈-2billion
• ASCII is an encoding from common characters (letters, symbols, etc.) to bit representations (chars).
 • E.g. 'A' is 0x41

• Neat property: all uppercase letters, and all lowercase letters, are sequentially represented!
 • E.g. 'B' is 0x42
printf and Integers

• There are 3 placeholders for 32-bit integers that we can use:
 • %d: signed 32-bit int
 • %u: unsigned 32-bit int
 • %x: hex 32-bit int

• As long as the value is a 32-bit type, printf will treat it according to the placeholder!
What happens at the byte level when we cast between variable types? **The bytes remain the same!** This means they may be interpreted differently depending on the type.

```c
int v = -12345;
unsigned int uv = v;
printf("v = %d, uv = %u\n", v, uv);
```

This prints out: "v = -12345, uv = 4294954951". **Why?**
Casting

• What happens at the byte level when we cast between variable types? The bytes remain the same! This means they may be interpreted differently depending on the type.

```c
int v = -12345;
unsigned int uv = v;
printf("v = %d, uv = %u\n", v, uv);
```

The bit representation for -12345 is `0b11111111111111110011111100111`. If we treat this binary representation as a positive number, it’s huge!
Casting

4-bit two's complement signed integer representation

4-bit unsigned integer representation
Comparisons Between Different Types

- **Be careful** when comparing signed and unsigned integers. **C will implicitly cast** the signed argument to unsigned, and then performs the operation assuming both numbers are non-negative.

<table>
<thead>
<tr>
<th>Expression</th>
<th>Type</th>
<th>Evaluation</th>
<th>Correct?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 == 0U</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>−1 < 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>−1 < 0U</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2147483647 > −</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2147483647 − 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2147483647U > −</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2147483647 − 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2147483647 > (int)2147483648U</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>−1 > −2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(unsigned)−1 > −2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
• Be careful when comparing signed and unsigned integers. C will implicitly cast the signed argument to unsigned, and then performs the operation assuming both numbers are non-negative.

<table>
<thead>
<tr>
<th>Expression</th>
<th>Type</th>
<th>Evaluation</th>
<th>Correct?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 == 0U</td>
<td>Unsigned</td>
<td>1</td>
<td>yes</td>
</tr>
<tr>
<td>-1 < 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1 < 0U</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2147483647 > -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2147483647 - 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2147483647U > -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2147483647 - 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2147483647 > (int)2147483648U</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1 > -2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(unsigned)-1 > -2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Comparisons Between Different Types

- **Be careful** when comparing signed and unsigned integers. **C will implicitly cast** the signed argument to unsigned, and then performs the operation assuming both numbers are non-negative.

<table>
<thead>
<tr>
<th>Expression</th>
<th>Type</th>
<th>Evaluation</th>
<th>Correct?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 == 0U</td>
<td>Unsigned</td>
<td>1</td>
<td>yes</td>
</tr>
<tr>
<td>-1 < 0</td>
<td>Signed</td>
<td>1</td>
<td>yes</td>
</tr>
<tr>
<td>-1 < 0U</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2147483647 > -1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2147483647U > -1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2147483647 > (int)2147483648U</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1 > -2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(unsigned)-1 > -2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Comparisons Between Different Types

- **Be careful** when comparing signed and unsigned integers. **C will implicitly cast** the signed argument to unsigned, and then performs the operation assuming both numbers are non-negative.

<table>
<thead>
<tr>
<th>Expression</th>
<th>Type</th>
<th>Evaluation</th>
<th>Correct?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 == 0U</td>
<td>Unsigned</td>
<td>1</td>
<td>yes</td>
</tr>
<tr>
<td>-1 < 0</td>
<td>Signed</td>
<td>1</td>
<td>yes</td>
</tr>
<tr>
<td>-1 < 0U</td>
<td>Unsigned</td>
<td>0</td>
<td>No!</td>
</tr>
<tr>
<td>2147483647 > -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2147483647 - 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2147483647U > -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2147483647 - 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2147483647 > (int)2147483648U</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1 > -2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(unsigned)-1 > -2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Comparisons Between Different Types

- Be careful when comparing signed and unsigned integers. **C will implicitly cast** the signed argument to unsigned, and then performs the operation assuming both numbers are non-negative.

<table>
<thead>
<tr>
<th>Expression</th>
<th>Type</th>
<th>Evaluation</th>
<th>Correct?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 == 0U</td>
<td>Unsigned</td>
<td>1</td>
<td>yes</td>
</tr>
<tr>
<td>-1 < 0</td>
<td>Signed</td>
<td>1</td>
<td>yes</td>
</tr>
<tr>
<td>-1 < 0U</td>
<td>Unsigned</td>
<td>0</td>
<td>No!</td>
</tr>
<tr>
<td>2147483647 > -2147483647</td>
<td>Signed</td>
<td>1</td>
<td>yes</td>
</tr>
<tr>
<td>2147483647U > -2147483647U - 1</td>
<td>Signed</td>
<td>0</td>
<td>No!</td>
</tr>
<tr>
<td>2147483647 > (int)2147483648U</td>
<td>(unsigned)</td>
<td>1</td>
<td>yes</td>
</tr>
<tr>
<td>-1 > -2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(unsigned)-1 > -2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Comparisons Between Different Types

- **Be careful** when comparing signed and unsigned integers. **C will implicitly cast** the signed argument to unsigned, and then performs the operation assuming both numbers are non-negative.

<table>
<thead>
<tr>
<th>Expression</th>
<th>Type</th>
<th>Evaluation</th>
<th>Correct?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 == 0U</td>
<td>Unsigned</td>
<td>1</td>
<td>yes</td>
</tr>
<tr>
<td>-1 < 0</td>
<td>Signed</td>
<td>1</td>
<td>yes</td>
</tr>
<tr>
<td>-1 < 0U</td>
<td>Unsigned</td>
<td>0</td>
<td>No!</td>
</tr>
<tr>
<td>2147483647 > -2147483647 - 1</td>
<td>Signed</td>
<td>1</td>
<td>yes</td>
</tr>
<tr>
<td>2147483647U > -2147483647 - 1</td>
<td>Unsigned</td>
<td>0</td>
<td>No!</td>
</tr>
<tr>
<td>2147483647 > (int)2147483648U</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1 > -2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(unsigned)-1 > -2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Comparisons Between Different Types

- **Be careful** when comparing signed and unsigned integers. **C will implicitly cast** the signed argument to unsigned, and then performs the operation assuming both numbers are non-negative.

<table>
<thead>
<tr>
<th>Expression</th>
<th>Type</th>
<th>Evaluation</th>
<th>Correct?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 == 0U</td>
<td>Unsigned</td>
<td>1</td>
<td>yes</td>
</tr>
<tr>
<td>(-1 < 0)</td>
<td>Signed</td>
<td>1</td>
<td>yes</td>
</tr>
<tr>
<td>(-1 < 0U)</td>
<td>Unsigned</td>
<td>0</td>
<td>No!</td>
</tr>
<tr>
<td>2147483647 > (-1)</td>
<td>Signed</td>
<td>1</td>
<td>yes</td>
</tr>
<tr>
<td>2147483647U > (-1)</td>
<td>Unsigned</td>
<td>0</td>
<td>No!</td>
</tr>
<tr>
<td>2147483647 > (int)2147483648U</td>
<td>Signed</td>
<td>1</td>
<td>No!</td>
</tr>
<tr>
<td>(-1 > -2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(unsigned)-1 > -2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Comparisons Between Different Types

- **Be careful** when comparing signed and unsigned integers. C will implicitly cast the signed argument to unsigned, and then performs the operation assuming both numbers are non-negative.

<table>
<thead>
<tr>
<th>Expression</th>
<th>Type</th>
<th>Evaluation</th>
<th>Correct?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 == 0U</td>
<td>Unsigned</td>
<td>1</td>
<td>yes</td>
</tr>
<tr>
<td>-1 < 0</td>
<td>Signed</td>
<td>1</td>
<td>yes</td>
</tr>
<tr>
<td>-1 < 0U</td>
<td>Unsigned</td>
<td>0</td>
<td>No!</td>
</tr>
<tr>
<td>2147483647 > -(2147483647 - 1)</td>
<td>Signed</td>
<td>1</td>
<td>yes</td>
</tr>
<tr>
<td>2147483647U > -(2147483647 - 1)</td>
<td>Unsigned</td>
<td>0</td>
<td>No!</td>
</tr>
<tr>
<td>2147483647 > (int)2147483648U</td>
<td>Signed</td>
<td>1</td>
<td>No!</td>
</tr>
<tr>
<td>-1 > -2</td>
<td>Signed</td>
<td>1</td>
<td>yes</td>
</tr>
<tr>
<td>(unsigned)-1 > -2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Comparisons Between Different Types

- **Be careful** when comparing signed and unsigned integers. **C will implicitly cast** the signed argument to unsigned, and then performs the operation assuming both numbers are non-negative.

<table>
<thead>
<tr>
<th>Expression</th>
<th>Type</th>
<th>Evaluation</th>
<th>Correct?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 == 0U</td>
<td>Unsigned</td>
<td>1</td>
<td>yes</td>
</tr>
<tr>
<td>-1 < 0</td>
<td>Signed</td>
<td>1</td>
<td>yes</td>
</tr>
<tr>
<td>-1 < 0U</td>
<td>Unsigned</td>
<td>0</td>
<td>No!</td>
</tr>
<tr>
<td>2147483647 > -2147483647 - 1</td>
<td>Signed</td>
<td>1</td>
<td>yes</td>
</tr>
<tr>
<td>2147483647U > -2147483647 - 1</td>
<td>Unsigned</td>
<td>0</td>
<td>No!</td>
</tr>
<tr>
<td>2147483647 > (int)2147483648U</td>
<td>Signed</td>
<td>1</td>
<td>No!</td>
</tr>
<tr>
<td>-1 > -2</td>
<td>Signed</td>
<td>1</td>
<td>yes</td>
</tr>
<tr>
<td>(unsigned)-1 > -2</td>
<td>Unsigned</td>
<td>1</td>
<td>yes</td>
</tr>
</tbody>
</table>
Comparisons Between Different Types

Which many of the following statements are true? (assume that variables are set to values that place them in the spots shown)

s3 > u3
u2 > u4
s2 > s4
s1 > s2
u1 > u2
s1 > u3
Comparisons Between Different Types

Which many of the following statements are true? (assume that variables are set to values that place them in the spots shown)

- \(s_3 > u_3 \) - true
- \(u_2 > u_4 \)
- \(s_2 > s_4 \)
- \(s_1 > s_2 \)
- \(u_1 > u_2 \)
- \(s_1 > u_3 \)
Comparisons Between Different Types

Which many of the following statements are true? *(assume that variables are set to values that place them in the spots shown)*

- $s_3 > u_3$ - true
- $u_2 > u_4$ - true
- $s_2 > s_4$
- $s_1 > s_2$
- $u_1 > u_2$
- $s_1 > u_3$
Which many of the following statements are true? (assume that variables are set to values that place them in the spots shown)

- $s_3 > u_3$ - true
- $u_2 > u_4$ - true
- $s_2 > s_4$ - false
- $s_1 > s_2$
- $u_1 > u_2$
- $s_1 > u_3$
Which many of the following statements are true? (assume that variables are set to values that place them in the spots shown)

- $s_3 > u_3$ - true
- $u_2 > u_4$ - true
- $s_2 > s_4$ - false
- $s_1 > s_2$ - true
- $u_1 > u_2$
- $s_1 > u_3$
Comparisons Between Different Types

Which many of the following statements are true? (assume that variables are set to values that place them in the spots shown)

s3 > u3 - true
u2 > u4 - true
s2 > s4 - false
s1 > s2 - true
u1 > u2 - true
s1 > u3
Which many of the following statements are true? (assume that variables are set to values that place them in the spots shown)

- $s_3 > u_3$ - true
- $u_2 > u_4$ - true
- $s_2 > s_4$ - false
- $s_1 > s_2$ - true
- $u_1 > u_2$ - true
- $s_1 > u_3$ - true
Plan For Today

• **Recap**: Integer Representations
• **Truncating and Expanding**
• Bitwise Operators and Masks
• **Demo 1**: Courses
• **Break**: Announcements
• **Demo 2**: Powers of 2
• Bit Shift Operators
Expanding Bit Representations

- Sometimes, we want to convert between two integers of different sizes (e.g. `short` to `int`, or `int` to `long`).

- We might not be able to convert from a bigger data type to a smaller data type, but we do want to always be able to convert from a smaller data type to a bigger data type.

- For unsigned values, we can add *leading zeros* to the representation (“zero extension”).

- For signed values, we can *repeat the sign of the value* for new digits (“sign extension”).

- Note: when doing `<`, `>`, `<=`, `>=` comparison between different size types, it will *promote to the larger type*.
unsigned short s = 4;
// short is a 16-bit format, so
s = 0000 0000 0000 0100b

unsigned int i = s;
// conversion to 32-bit int, so i = 0000 0000 0000 0000 0000 0000 0000 0100b
short s = 4;
 // short is a 16-bit format, so
 s = 0000 0000 0000 0100b

int i = s;
 // conversion to 32-bit int, so
 i = 0000 0000 0000 0000 0000 0000 0000 0100b

– or –

short s = -4;
 // short is a 16-bit format, so
 s = 1111 1111 1111 1100b

int i = s;
 // conversion to 32-bit int, so
 i = 1111 1111 1111 1111 1111 1111 1111 1100b
If we want to **reduce** the bit size of a number, C *truncates* the representation and discards the *more significant bits*.

```c
int x = 53191;
short sx = x;
int y = sx;
```

What happens here? Let's look at the bits in x (a 32-bit int), 53191:

```
0000 0000 0000 0000 1100 1111 1100 0111
```

When we cast x to a short, it only has 16-bits, and C *truncates* the number:

```
1100 1111 1100 0111
```

This is -12345! And when we cast sx back an int, we sign-extend the number.

```
1111 1111 1111 1111 1100 1111 1100 0111  // still -12345
```
Truncating Bit Representation

If we want to **reduce** the bit size of a number, C *truncates* the representation and discards the *more significant bits*.

```c
int x = -3;
short sx = x;
int y = sx;
```

What happens here? Let's look at the bits in `x` (a 32-bit int), -3:

```
1111 1111 1111 1111 1111 1111 1111 1101
```

When we cast `x` to a short, it only has 16-bits, and C *truncates* the number:

```
1111 1111 1111 1101
```

This is -3! **If the number does fit, it will convert fine.** `y` looks like this:

```
1111 1111 1111 1101 // still -3
```
If we want to reduce the bit size of a number, C truncates the representation and discards the more significant bits.

```c
unsigned int x = 128000;
unsigned short sx = x;
unsigned int y = sx;
```

What happens here? Let's look at the bits in `x` (a 32-bit unsigned int), 128000:

```
0000 0000 0000 001 1111 0100 0000 0000
```

When we cast `x` to a short, it only has 16-bits, and C truncates the number:

```
1111 0100 0000 0000
```

This is 62464! **Unsigned numbers can lose info too.** Here is what `y` looks like:

```
0000 0000 0000 0000 1111 0100 0000 0000 // still 62464
```
The sizeof Operator

long sizeof(type);

// Example
long int_size_bytes = sizeof(int); // 4
long short_size_bytes = sizeof(short); // 2
long char_size_bytes = sizeof(char); // 1

sizeof takes a variable type as a parameter and returns the size of that type, in bytes.
Now that we understand binary representations, how can we manipulate them at the bit level?
Plan For Today

• **Recap**: Integer Representations
• Truncating and Expanding
• **Bitwise Operators and Masks**
• **Demo 1**: Courses
• **Break**: Announcements
• **Demo 2**: Powers of 2
• Bit Shift Operators
Bitwise Operators

• You’re already familiar with many operators in C:
 • Arithmetic operators: +, -, *, /, %
 • Comparison operators: ==, !=, <, >, <=, >=
 • Logical Operators: &&, ||, !

• Today, we’re introducing a new category of operators: **bitwise operators**:
 • &, |, ~, ^, <<, >>
And (&)

AND is a binary operator. The AND of 2 bits is 1 if both bits are 1, and 0 otherwise.

```
output = a & b;
```

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
OR is a binary operator. The OR of 2 bits is 1 if either (or both) bits is 1.

\[\text{output} = a \mid b; \]

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
NOT is a unary operator. The NOT of a bit is 1 if the bit is 0, or 1 otherwise.

```
output = ~a;
```

<table>
<thead>
<tr>
<th>a</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Exclusive Or (XOR) is a binary operator. The XOR of 2 bits is 1 if *exactly* one of the bits is 1, or 0 otherwise.

```
output = a ^ b;
```

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
An Aside: Boolean Algebra

• These operators are not unique to computers; they are part of a general area called **Boolean Algebra**. These are applicable in math, hardware, computers, and more!

<table>
<thead>
<tr>
<th></th>
<th>NOT</th>
<th>AND</th>
<th>OR</th>
<th>XOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>a</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Operators on Multiple Bits

- When these operators are applied to numbers (multiple bits), the operator is applied to the corresponding bits in each number. For example:

<table>
<thead>
<tr>
<th>AND</th>
<th>OR</th>
<th>XOR</th>
<th>NOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0110 & 1100 ---- 0100</td>
<td>0110</td>
<td>0110 ^ 1100 ---- 1010</td>
<td>~ 1100 ---- 0011</td>
</tr>
</tbody>
</table>

Note: these are different from the logical operators AND (&&), OR (||) and NOT (!).
Operators on Multiple Bits

• When these operators are applied to numbers (multiple bits), the operator is applied to the corresponding bits in each number. For example:

<table>
<thead>
<tr>
<th>AND</th>
<th>OR</th>
<th>XOR</th>
<th>NOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0110 & 1100 ---- 0100</td>
<td>0110</td>
<td>0110 ^ 1100 ---- 1010</td>
<td>~ 1100 ---- 0011</td>
</tr>
</tbody>
</table>

This is different from logical AND (&&). The logical AND returns true if both are nonzero, or false otherwise.
Operators on Multiple Bits

• When these operators are applied to numbers (multiple bits), the operator is applied to the corresponding bits in each number. For example:

\[
\begin{array}{c}
\text{AND} \\
\begin{array}{c}
0110 \\
\& 1100 \\
\hline \\
0100 \\
\end{array}
\end{array}
\quad
\begin{array}{c}
\text{OR} \\
\begin{array}{c}
0110 \\
| 1100 \\
\hline \\
1110 \\
\end{array}
\end{array}
\quad
\begin{array}{c}
\text{XOR} \\
\begin{array}{c}
0110 \\
\^ 1100 \\
\hline \\
1010 \\
\end{array}
\end{array}
\quad
\begin{array}{c}
\text{NOT} \\
\begin{array}{c}
\sim 1100 \\
\hline \\
0011 \\
\end{array}
\end{array}
\]

This is different from logical NOT (!). The logical NOT returns true if this is zero, and false otherwise.
Bit Vectors and Sets

- We can use bit vectors (ordered collections of bits) to represent finite sets, and perform functions such as union, intersection, and complement.

- **Example:** we can represent current courses taken using a `char`.

```
0 0 1 0 0 0 1 1
```

<table>
<thead>
<tr>
<th>CS161</th>
<th>CS109</th>
<th>CS103</th>
<th>CS110</th>
<th>CS107</th>
<th>CS106X</th>
<th>CS106B</th>
<th>CS106A</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
• How do we find the union of two sets of courses taken? Use OR:

```
00100011
| 01100001
----
01100011
```
• How do we find the intersection of two sets of courses taken? Use AND:

```
00100011
& 01100001
-----
00100001
```
Bit Masking

• We will frequently want to manipulate or isolate out specific bits in a larger collection of bits. A **bitmask** is a constructed bit pattern that we can use, along with bit operators, to do this.

• **Example:** how do we update our bit vector to indicate we’ve taken CS107?

```
<table>
<thead>
<tr>
<th></th>
<th></th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS161</td>
<td>CS109</td>
<td>CS103</td>
<td>CS110</td>
<td>CS107</td>
<td>CS106X</td>
<td>CS106B</td>
<td>CS106A</td>
<td></td>
</tr>
</tbody>
</table>
```

```
00100011
| 00001000
-----
00101011
```
#define CS106A 0x1 /* 0000 0001 */
#define CS106B 0x2 /* 0000 0010 */
#define CS106X 0x4 /* 0000 0100 */
#define CS107 0x8 /* 0000 1000 */
#define CS110 0x10 /* 0001 0000 */
#define CS103 0x20 /* 0010 0000 */
#define CS109 0x40 /* 0100 0000 */
#define CS161 0x80 /* 1000 0000 */

char myClasses = ...;
myClasses = myClasses | CS107; // Add CS107
Bit Masking

#define CS106A 0x1 /* 0000 0001 */
#define CS106B 0x2 /* 0000 0010 */
#define CS106X 0x4 /* 0000 0100 */
#define CS107 0x8 /* 0000 1000 */
#define CS110 0x10 /* 0001 0000 */
#define CS103 0x20 /* 0010 0000 */
#define CS109 0x40 /* 0100 0000 */
#define CS161 0x80 /* 1000 0000 */

char myClasses = ...;
myClasses |= CS107; // Add CS107
Bit Masking

• **Example:** how do we update our bit vector to indicate we’ve *not* taken CS103?

<table>
<thead>
<tr>
<th></th>
<th>CS161</th>
<th>CS109</th>
<th>CS103</th>
<th>CS110</th>
<th>CS107</th>
<th>CS106X</th>
<th>CS106B</th>
<th>CS106A</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

00100011

& 11011111

00000011

char myClasses = ...;
myClasses = myClasses & ~CS103; // Remove CS103
Bit Masking

Example: how do we update our bit vector to indicate we’ve not taken CS103?

```
00100011
& 11011111
----
----
00000011
```

```
char myClasses = ...;
myClasses &= ~CS103;  // Remove CS103
```
Bit Masking

• **Example:** how do we check if we’ve taken CS106B?

```c
char myClasses = ...;
if (myClasses & CS106B) {
// taken CS106B!
```
Bit Masking

• Example: how do we check if we’ve not taken CS107?

```
char myClasses = ...;
if (((myClasses & CS107) ^ CS107) {...
   // not taken CS107!
```
Bit Masking

- **Example**: how do we check if we’ve *not* taken CS107?

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CS161</td>
<td>CS109</td>
<td>CS103</td>
<td>CS110</td>
<td>CS107</td>
<td>CS106X</td>
<td>CS106B</td>
<td>CS106A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
\begin{array}{cccccccc}
0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\
\end{array}
\]

00100011
\& 00001000

00000000

cchar myClasses = ...;

if (!(myClasses & CS107)) {
 // not taken CS107!
Demo: Bitmasks and GDB
Bit Masking

• Bit masking is also useful for integer representations as well. For instance, we might want to check the value of the most-significant bit, or just one of the middle bytes.

• **Example:** If I have a 32-bit integer j, what operation should I perform if I want to get *just the lowest byte* in j?

```
int j = ...;
int k = j & 0xff;  // mask to get just lowest byte
```
Practice: Bit Masking

• **Practice 1**: write an expression that, given a 32-bit integer j, sets its least-significant byte to all 1s, but preserves all other bytes.

• **Practice 2**: write an expression that, given a 32-bit integer j, flips ("complements") all but the least-significant byte, and preserves all other bytes.
Practice: Bit Masking

• **Practice 1:** write an expression that, given a 32-bit integer \(j \), sets its least-significant byte to all 1s, but preserves all other bytes.
 \[j \mid 0xff \]

• **Practice 2:** write an expression that, given a 32-bit integer \(j \), flips ("complements") all but the least-significant byte, and preserves all other bytes.
 \[j \ ^\ ^\lor \ 0xff \]
Plan For Today

- **Recap**: Integer Representations
- Truncating and Expanding
- Bitwise Boolean Operators and Masks
- **Demo 1**: Courses
- **Break: Announcements**
- **Demo 2**: Powers of 2
- Bit Shift Operators
• Please send us any OAE letters or athletics conflicts as soon as possible.
• Assignment 0 deadline tonight at 11:59PM PST
• Assignment 1 (Bit operations!) goes out tonight at Assignment 0 deadline
 • Saturated arithmetic
 • Cell Automata
 • Unicode and UTF-8
 • Note about helper hours
• Lab 1 this week!
Without using loops, how can we detect if a binary number is a power of 2? What is special about its binary representation and how can we leverage that?
Demo: Powers of 2
Plan For Today

• **Recap**: Integer Representations
• Truncating and Expanding
• Bitwise Boolean Operators and Masks
• **Demo 1**: Courses
• **Break**: Announcements
• **Demo 2**: Powers of 2
• **Bit Shift Operators**
The LEFT SHIFT operator shifts a bit pattern a certain number of positions to the left. New lower order bits are filled in with 0s, and bits shifted off of the end are lost.

\[x \ll k; \quad // \text{shifts } x \text{ to the left by } k \text{ bits} \]

8-bit examples:
- 00110111 \ll 2 results in 11011100
- 01100011 \ll 4 results in 00110000
- 10010101 \ll 4 results in 01010000
Right Shift (>>)

The RIGHT SHIFT operator shifts a bit pattern a certain number of positions to the right. Bits shifted off of the end are lost.

```c
x >> k;  // shifts x to the right by k bits
```

Question: how should we fill in new higher-order bits?

Idea: let’s follow left-shift and fill with 0s.

```c
short x = 2;  // 0000 0000 0000 0010
x >> 1;       // 0000 0000 0000 0001
printf("%d\n", x); // 1
```
Right Shift (>>)

The RIGHT SHIFT operator shifts a bit pattern a certain number of positions to the right. Bits shifted off of the end are lost.

\[
x \gg k; \quad \text{// shifts } x \text{ to the right by } k \text{ bits}
\]

Question: how should we fill in new higher-order bits?

Idea: let’s follow left-shift and fill with 0s.

```c
short x = -2; \quad \text{// 1111 1111 1111 1110}
x \gg 1; \quad \text{// 0111 1111 1111 1111}
printf("%d\n", x); \quad \text{// 32767!}
```
The RIGHT SHIFT operator shifts a bit pattern a certain number of positions to the right. Bits shifted off of the end are lost.

\[x \gg k; \quad // \text{shifts } x \text{ to the right by } k \text{ bits} \]

Question: how should we fill in new higher-order bits?

Problem: always filling with zeros means we may change the sign bit.

Solution: let’s fill with the sign bit!
The RIGHT SHIFT operator shifts a bit pattern a certain number of positions to the right. Bits shifted off of the end are lost.

\[x \gg k; \quad // \text{shifts } x \text{ to the right by } k \text{ bits} \]

Question: how should we fill in new higher-order bits?

Solution: let’s fill with the sign bit!

```c
short x = 2;  // 0000 0000 0000 0010
x >> 1;       // 0000 0000 0000 0001
printf("%d\n", x);  // 1
```
Right Shift (>>)

The RIGHT SHIFT operator shifts a bit pattern a certain number of positions to the right. Bits shifted off of the end are lost.

```
x >> k;  // shifts x to the right by k bits
```

Question: how should we fill in new higher-order bits?

Solution: let’s fill with the sign bit!

```
short x = -2;  // 1111 1111 1111 1110
x >> 1;  // 1111 1111 1111 1111
printf("%d\n", x);  // -1!
```
Right Shift (>>)

There are two kinds of right shifts, depending on the value and type you are shifting:

- **Logical Right Shift**: fill new high-order bits with 0s.
- **Arithmetic Right Shift**: fill new high-order bits with the most-significant bit.

Unsigned numbers are right-shifted using **Logical Right Shift**.

Signed numbers are right-shifted using **Arithmetic Right Shift**.

This way, the sign of the number (if applicable) is preserved!
1. *Technically*, the C standard does not precisely define whether a right shift for signed integers is logical or arithmetic. However, almost all compilers/machines use arithmetic, and you can most likely assume this.

2. Operator precedence can be tricky! For example:

\[1 << 2 + 3 << 4\] means \[1 << (2+3) << 4\] because addition and subtraction have higher precedence than shifts! Always use parentheses to be sure:

\[(1 << 2) + (3 << 4)\]
• The default type of a number literal in your code is an **int**.

• Let’s say you want a long with the index-32 bit as 1:

```java
long num = 1 << 32;
```

• This doesn’t work! 1 is by default an **int**, and you can’t shift an int by 32 because it only has 32 bits. You must specify that you want 1 to be a **long**.

```java
long num = 1L << 32;
```
Recap

• Recap: Integer Representations
• Truncating and Expanding
• Bitwise Boolean Operators and Masks
• Demo 1: Courses
• Break: Announcements
• Demo 2: Powers of 2
• Bit Shift Operators

Next time: How can a computer represent and manipulate more complex data like text?
Demo: Absolute Value