
1
This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Marty Stepp, Cynthia Lee, Chris Gregg, and others.

CS107 Lecture 9
C Generics – Function Pointers

Reading: K&R 5.11

2

Learning Goals
• Learn how to write C code that works with any data type.
• Learn how to pass functions as parameters
• Learn how to write functions that accept functions as parameters

3

Plan For Today
• Recap: Generics with Void *
• Finish up: Generic Stack
• Function Pointers
• Example: Bubble Sort
• Example: Generic Printing

cp -r /afs/ir/class/cs107/samples/lectures/lect9 .

4

Plan For Today
• Recap: Generics with Void *
• Finish up: Generic Stack
• Function Pointers
• Example: Bubble Sort
• Example: Generic Printing

5

Generics
• We always strive to write code that is as general-purpose as possible.
• Generic code reduces code duplication, and means you can make

improvements and fix bugs in one place rather than many.
• Generics is used throughout C for functions to sort any array, search any array,

free arbitrary memory, and more.

6

Generic Swap
Wouldn’t it be nice if we could write one function that would work with any
parameter type, instead of so many different versions?

void swap_int(int *a, int *b) { … }
void swap_float(float *a, float *b) { … }
void swap_size_t(size_t *a, size_t *b) { … }
void swap_double(double *a, double *b) { … }
void swap_string(char **a, char **b) { … }
void swap_mystruct(mystruct *a, mystruct *b) { … }
…

7

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
char temp[nbytes];
// store a copy of data1 in temporary storage
memcpy(temp, data1ptr, nbytes);
// copy data2 to location of data1
memcpy(data1ptr, data2ptr, nbytes);
// copy data in temporary storage to location of data2
memcpy(data2ptr, temp, nbytes);

}

Generic Swap

We can use void * to represent a pointer to any
data, and memcpy to copy arbitrary bytes.

8

Void * Pitfalls
• void *s are powerful, but dangerous - C cannot do as much checking!
• E.g. with int, C would never let you swap half of an int. With void *s, this can

happen!

int x = 0xffffffff;
int y = 0xeeeeeeee;
swap(&x, &y, sizeof(short));

// now x = 0xffffeeee, y = 0xeeeeffff!
printf("x = 0x%x, y = 0x%x\n", x, y);

9

Swap Ends
Let’s write a function that swaps the first and last elements in an array. How can
we make this generic?
void swap_ends_int(int *arr, size_t nelems) {

swap(arr, arr + nelems – 1, sizeof(*arr));
}

void swap_ends_short(short *arr, size_t nelems) {
swap(arr, arr + nelems – 1, sizeof(*arr));

}

void swap_ends_string(char **arr, size_t nelems) {
swap(arr, arr + nelems – 1, sizeof(*arr));

}

void swap_ends_float(float *arr, size_t nelems) {
swap(arr, arr + nelems – 1, sizeof(*arr));

}

10

Pointer Arithmetic
arr + nelems – 1

Let’s say nelems = 4. How many bytes beyond arr is this?

If it’s an array of…
Int: adds 3 places to arr, and 3 * sizeof(int) = 12 bytes
Short: adds 3 places to arr, and 3 * sizeof(short) = 6 bytes
Char *: adds 3 places to arr, and 3 * sizeof(char *) = 24 bytes

In each case, we need to know the element size to do the arithmetic.

11

Swap Ends
You’re asked to write a function that swaps the first and last elements in an
array of numbers. Well, now it can swap an array of anything!

void swap_ends(void *arr, size_t nelems, size_t elem_bytes) {
swap(arr, (char *)arr + (nelems – 1) * elem_bytes, elem_bytes);

}

12

Plan For Today
• Recap: Generics with Void *
• Finish up: Generic Stack
• Function Pointers
• Example: Bubble Sort
• Example: Generic Printing

13

Stacks
• C generics are particularly powerful in helping us create generic data

structures.
• Let’s see how we might go about making a generic Stack in C.

14

Demo: Int Stack

int_stack.c

15

What modifications are
necessary to make a

generic stack?

16

Stack Structs
typedef struct int_node {

struct int_node *next;
int data;

} int_node;

typedef struct int_stack {
int nelems;
int_node *top;

} int_stack;

How might we modify the Stack data
representation itself to be generic?

17

Stack Structs
typedef struct int_node {

struct int_node *next;
int data;

} int_node;

typedef struct int_stack {
int nelems;
int_node *top;

} int_stack;

Problem: each node can no longer store the
data itself, because it could be any size!

18

Generic Stack Structs
typedef struct int_node {

struct int_node *next;
void *data;

} int_node;

typedef struct stack {
int nelems;
int elem_size_bytes;
node *top;

} stack;
Solution: each node stores a pointer, which is
always 8 bytes, to the data somewhere else. We
must also store the data size in the Stack struct.

19

Stack Functions
• int_stack_create(): creates a new stack on the heap and returns a

pointer to it
• int_stack_push(int_stack *s, int data): pushes data onto the

stack
• int_stack_pop(int_stack *s): pops and returns topmost stack element

20

int_stack_create
int_stack *int_stack_create() {

int_stack *s = malloc(sizeof(int_stack));
s->nelems = 0;
s->top = NULL;
return s;

}
How might we modify this function to be
generic?

From previous slide:
typedef struct stack {

int nelems;
int elem_size_bytes;
node *top;

} stack;

21

Generic stack_create
stack *stack_create(int elem_size_bytes) {

stack *s = malloc(sizeof(stack));
s->nelems = 0;
s->top = NULL;
s->elem_size_bytes = elem_size_bytes;
return s;

}

22

int_stack_push
void int_stack_push(int_stack *s, int data) {

int_node *new_node = malloc(sizeof(int_node));
new_node->data = data;

new_node->next = s->top;
s->top = new_node;
s->nelems++;

}

How might we modify this function to be
generic?

From previous slide:
typedef struct stack {

int nelems;
int elem_size_bytes;
node *top;

} stack;

typedef struct node {
struct node *next;
void *data;

} node;

23

Generic stack_push
void int_stack_push(int_stack *s, int data) {

int_node *new_node = malloc(sizeof(int_node));
new_node->data = data;

new_node->next = s->top;
s->top = new_node;
s->nelems++;

}

Problem 1: we can no longer pass the data itself
as a parameter, because it could be any size!

24

Generic stack_push
void int_stack_push(int_stack *s, const void *data) {

int_node *new_node = malloc(sizeof(int_node));
new_node->data = data;

new_node->next = s->top;
s->top = new_node;
s->nelems++;

}

Solution 1: pass a pointer to the
data as a parameter instead.

25

Generic stack_push
void int_stack_push(int_stack *s, const void *data) {

int_node *new_node = malloc(sizeof(int_node));
new_node->data = data;

new_node->next = s->top;
s->top = new_node;
s->nelems++;

}
Problem 2: we cannot copy the existing data
pointer into new_node. The data structure must
manage its own copy that exists for its entire
lifetime. The provided copy may go away!

26

Generic stack_push
int main() {

stack *int_stack = stack_create(sizeof(int));
add_one(int_stack);
// now stack stores pointer to invalid memory for 7!

}

void add_one(stack *s) {
int num = 7;
stack_push(s, &num);

}

27

Generic stack_push
void stack_push(stack *s, const void *data) {

node *new_node = malloc(sizeof(node));
new_node->data = malloc(s->elem_size_bytes);
memcpy(new_node->data, data, s->elem_size_bytes);

new_node->next = s->top;
s->top = new_node;
s->nelems++;

}
Solution 2: make a heap-allocated copy
of the data that the node points to.

28

int_stack_pop
int int_stack_pop(int_stack *s) {

if (s->nelems == 0) {
error(1, 0, "Cannot pop from empty stack");

}
int_node *n = s->top;
int value = n->data;

s->top = n->next;

free(n);
s->nelems--;

return value;
}

How might we modify this function to be
generic?

From previous slide:
typedef struct stack {

int nelems;
int elem_size_bytes;
node *top;

} stack;

typedef struct node {
struct node *next;
void *data;

} node;

29

Generic stack_pop
int int_stack_pop(int_stack *s) {

if (s->nelems == 0) {
error(1, 0, "Cannot pop from empty stack");

}
int_node *n = s->top;
int value = n->data;

s->top = n->next;

free(n);
s->nelems--;

return value;
}

Problem: we can no longer return the
data itself, because it could be any size!

30

Generic stack_pop
void *int_stack_pop(int_stack *s) {

if (s->nelems == 0) {
error(1, 0, "Cannot pop from empty stack");

}
int_node *n = s->top;
void *value = n->data;

s->top = n->next;

free(n);
s->nelems--;

return value;
}

While it’s possible to return the heap
address of the element, this means the
client would be responsible for freeing it.
Ideally, the data structure should manage
its own memory here.

31

Generic stack_pop
void stack_pop(stack *s, void *addr) {

if (s->nelems == 0) {
error(1, 0, "Cannot pop from empty stack");

}
node *n = s->top;
memcpy(addr, n->data, s->elem_size_bytes);
s->top = n->next;

free(n->data);
free(n);
s->nelems--;

}
Solution: have the caller pass a memory
location as a parameter and copy the data
to that location.

32

Using Generic Stack
int_stack *intstack = int_stack_create();
for (int i = 0; i < TEST_STACK_SIZE; i++) {

int_stack_push(intstack, i);
}

We must now pass the address of an element to push
onto the stack, rather than the element itself.

33

Using Generic Stack
stack *intstack = stack_create(sizeof(int));
for (int i = 0; i < TEST_STACK_SIZE; i++) {

stack_push(intstack, &i);
}

We must now pass the address of an element to push
onto the stack, rather than the element itself.

34

Using Generic Stack
int_stack *intstack = int_stack_create();
int_stack_push(intstack, 7);

We must now pass the address of an element to push
onto the stack, rather than the element itself.

35

Using Generic Stack
stack *intstack = stack_create(sizeof(int));
int num = 7;
stack_push(intstack, &num);

We must now pass the address of an element to push
onto the stack, rather than the element itself.

36

Using Generic Stack
// Pop off all elements
while (intstack->nelems > 0) {

printf("%d\n", int_stack_pop(intstack));
}

We must now pass the address of where we would
like to store the popped element, rather than getting
it directly as a return value.

37

Using Generic Stack
// Pop off all elements
int popped_int;
while (intstack->nelems > 0) {

int_stack_pop(intstack, &popped_int);
printf("%d\n", popped_int);

}

We must now pass the address of where we would
like to store the popped element, rather than getting
it directly as a return value.

38

Demo: Generic Stack

generic_stack.c

39

Plan For Today
• Recap: Generics with Void *
• Finish up: Generic Stack
• Function Pointers
• Example: Bubble Sort
• Example: Generic Printing

40

Bubble Sort
• Let’s write a function to sort a list of integers. We’ll use the bubble sort

algorithm.

• Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

4 2 12 -5 56 14

41

Bubble Sort
• Let’s write a function to sort a list of integers. We’ll use the bubble sort

algorithm.

• Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

4 2 12 -5 56 14

42

Bubble Sort
• Let’s write a function to sort a list of integers. We’ll use the bubble sort

algorithm.

• Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

2 4 12 -5 56 14

43

Bubble Sort
• Let’s write a function to sort a list of integers. We’ll use the bubble sort

algorithm.

• Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

2 4 12 -5 56 14

44

Bubble Sort
• Let’s write a function to sort a list of integers. We’ll use the bubble sort

algorithm.

• Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

2 4 12 -5 56 14

45

Bubble Sort
• Let’s write a function to sort a list of integers. We’ll use the bubble sort

algorithm.

• Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

2 4 -5 12 56 14

46

Bubble Sort
• Let’s write a function to sort a list of integers. We’ll use the bubble sort

algorithm.

• Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

2 4 -5 12 56 14

47

Bubble Sort
• Let’s write a function to sort a list of integers. We’ll use the bubble sort

algorithm.

• Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

2 4 -5 12 56 14

48

Bubble Sort
• Let’s write a function to sort a list of integers. We’ll use the bubble sort

algorithm.

• Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

2 4 -5 12 14 56

49

Bubble Sort
• Let’s write a function to sort a list of integers. We’ll use the bubble sort

algorithm.

• Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

2 4 -5 12 14 56

50

Bubble Sort
• Let’s write a function to sort a list of integers. We’ll use the bubble sort

algorithm.

• Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

2 4 -5 12 14 56

51

Bubble Sort
• Let’s write a function to sort a list of integers. We’ll use the bubble sort

algorithm.

• Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

2 -5 4 12 14 56

52

Bubble Sort
• Let’s write a function to sort a list of integers. We’ll use the bubble sort

algorithm.

• Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

2 -5 4 12 14 56

53

Bubble Sort
• Let’s write a function to sort a list of integers. We’ll use the bubble sort

algorithm.

• Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

2 -5 4 12 14 56

54

Bubble Sort
• Let’s write a function to sort a list of integers. We’ll use the bubble sort

algorithm.

• Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

2 -5 4 12 14 56

55

Bubble Sort
• Let’s write a function to sort a list of integers. We’ll use the bubble sort

algorithm.

• Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

2 -5 4 12 14 56

56

Bubble Sort
• Let’s write a function to sort a list of integers. We’ll use the bubble sort

algorithm.

• Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

-5 2 4 12 14 56

57

Bubble Sort
• Let’s write a function to sort a list of integers. We’ll use the bubble sort

algorithm.

• Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

-5 2 4 12 14 56

58

Bubble Sort
• Let’s write a function to sort a list of integers. We’ll use the bubble sort

algorithm.

• Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

-5 2 4 12 14 56

59

Bubble Sort
• Let’s write a function to sort a list of integers. We’ll use the bubble sort

algorithm.

• Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

-5 2 4 12 14 56

60

Bubble Sort
• Let’s write a function to sort a list of integers. We’ll use the bubble sort

algorithm.

• Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

-5 2 4 12 14 56

61

Bubble Sort
• Let’s write a function to sort a list of integers. We’ll use the bubble sort

algorithm.

• Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

-5 2 4 12 14 56

62

Bubble Sort
• Let’s write a function to sort a list of integers. We’ll use the bubble sort

algorithm.

• Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

-5 2 4 12 14 56

63

Bubble Sort
• Let’s write a function to sort a list of integers. We’ll use the bubble sort

algorithm.

• Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

-5 2 4 12 14 56

64

Bubble Sort
• Let’s write a function to sort a list of integers. We’ll use the bubble sort

algorithm.

• Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

-5 2 4 12 14 56

65

Bubble Sort
• Let’s write a function to sort a list of integers. We’ll use the bubble sort

algorithm.

• Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

-5 2 4 12 14 56

66

Bubble Sort
• Let’s write a function to sort a list of integers. We’ll use the bubble sort

algorithm.

• Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

-5 2 4 12 14 56

67

Integer Bubble Sort
void bubble_sort_int(int *arr, int n) {

while (true) {
bool swapped = false;
for (int i = 1; i < n; i++) {

if (arr[i - 1] > arr[i]) {
swapped = true;
swap_int(&arr[i - 1], &arr[i]);

}
}

if (!swapped) {
return;

}
}

}
How can we make this function
generic, to sort an array of any type?

68

Integer Bubble Sort
void bubble_sort_int(int *arr, int n) {

while (true) {
bool swapped = false;
for (int i = 1; i < n; i++) {

if (arr[i - 1] > arr[i]) {
swapped = true;
swap_int(&arr[i - 1], &arr[i]);

}
}

if (!swapped) {
return;

}
}

}
Let’s start by making the parameters
and swap generic.

69

Generic Bubble Sort
void bubble_sort_int(void *arr, int n, int elem_size_bytes) {

while (true) {
bool swapped = false;
for (int i = 1; i < n; i++) {

if (arr[i - 1] > arr[i]) {
swapped = true;
swap_int(&arr[i - 1], &arr[i]);

}
}

if (!swapped) {
return;

}
}

}
Let’s start by making the parameters
and swap generic.

70

Generic Bubble Sort
void bubble_sort_int(void *arr, int n, int elem_size_bytes) {

while (true) {
bool swapped = false;
for (int i = 1; i < n; i++) {

if (arr[i - 1] > arr[i]) {
swapped = true;
swap(&arr[i - 1], &arr[i], elem_size_bytes);

}
}

if (!swapped) {
return;

}
}

}
Let’s start by making the parameters
and swap generic.

71

Key Idea: Generically Getting i-th Elem
A common generics idiom is getting a pointer to the i-th element of a generic
array. From last lecture, we know how to get the last element generically:

void swap_ends(void *arr, size_t nelems, size_t elem_bytes) {
swap(arr, (char *)arr + (nelems – 1) * elem_bytes, elem_bytes);

}

How can we generalize this to get the i-th element?

void *ith_elem = (char *)arr + i * elem_size_bytes;

72

Generic Bubble Sort
void bubble_sort_int(void *arr, int n, int elem_size_bytes) {

while (true) {
bool swapped = false;
for (int i = 1; i < n; i++) {

void *prev_elem = (char *)arr + (i - 1) * elem_size_bytes;
void *curr_elem = (char *)arr + i * elem_size_bytes;
if (arr[i - 1] > arr[i]) {

swapped = true;
swap(&arr[i - 1], &arr[i], elem_size_bytes);

}
}

if (!swapped) {
return;

}
}

}

Let’s start by making the parameters
and swap generic.

73

Generic Bubble Sort
void bubble_sort_int(void *arr, int n, int elem_size_bytes) {

while (true) {
bool swapped = false;
for (int i = 1; i < n; i++) {

void *prev_elem = (char *)arr + (i - 1) * elem_size_bytes;
void *curr_elem = (char *)arr + i * elem_size_bytes;
if (*prev_elem > *curr_elem) {

swapped = true;
swap(prev_elem, curr_elem, elem_size_bytes);

}
}

if (!swapped) {
return;

}
}

}

Let’s start by making the parameters
and swap generic.

74

Generic Bubble Sort
void bubble_sort_int(void *arr, int n, int elem_size_bytes) {

while (true) {
bool swapped = false;
for (int i = 1; i < n; i++) {

void *prev_elem = (char *)arr + (i - 1) * elem_size_bytes;
void *curr_elem = (char *)arr + i * elem_size_bytes;
if (*prev_elem > *curr_elem) {

swapped = true;
swap(prev_elem, curr_elem, elem_size_bytes);

}
}

if (!swapped) {
return;

}
}

}

75

Generic Bubble Sort
void bubble_sort_int(void *arr, int n, int elem_size_bytes) {

while (true) {
bool swapped = false;
for (int i = 1; i < n; i++) {

void *prev_elem = (char *)arr + (i - 1) * elem_size_bytes;
void *curr_elem = (char *)arr + i * elem_size_bytes;
if (*prev_elem > *curr_elem) {

swapped = true;
swap(prev_elem, curr_elem, elem_size_bytes);

}
}

if (!swapped) {
return;

}
}

}

Wait a minute…this doesn’t work! We can’t
dereference void *s OR compare any element
with >, since they may not be numbers!

🤔

76

A Generics Conundrum
• We’ve hit a wall – there is no way to generically compare elements. They

could be any type, and have complex ways to compare them.
• How can we write code to compare any two elements of the same type?
• That’s not something that bubble sort can ever know how to do. BUT – our

caller should know how to do this, because they’re passing in the data….let’s
ask them!

77

Generic Bubble Sort
void bubble_sort_int(void *arr, int n, int elem_size_bytes) {

while (true) {
bool swapped = false;
for (int i = 1; i < n; i++) {

void *prev_elem = (char *)arr + (i - 1) * elem_size_bytes;
void *curr_elem = (char *)arr + i * elem_size_bytes;
if (*prev_elem > *curr_elem) {

swapped = true;
swap(prev_elem, curr_elem, elem_size_bytes);

}
}

if (!swapped) {
return;

}
}

}

Us: hey, you, person who
called us. Do you know how
to compare these two
elements? Can you help us?

78

Generic Bubble Sort
void bubble_sort_int(void *arr, int n, int elem_size_bytes) {

while (true) {
bool swapped = false;
for (int i = 1; i < n; i++) {

void *prev_elem = (char *)arr + (i - 1) * elem_size_bytes;
void *curr_elem = (char *)arr + i * elem_size_bytes;
if (*prev_elem > *curr_elem) {

swapped = true;
swap(prev_elem, curr_elem, elem_size_bytes);

}
}

if (!swapped) {
return;

}
}

}

Caller: yeah, I know how to compare those.
You don’t know what data type they are, but I
do. I have a function that can do the
comparison for you and tell you the result.

79

Generic Bubble Sort
void bubble_sort_int(void *arr, int n, int elem_size_bytes,

function compare_fn) {
while (true) {

bool swapped = false;
for (int i = 1; i < n; i++) {

void *prev_elem = (char *)arr + (i - 1) * elem_size_bytes;
void *curr_elem = (char *)arr + i * elem_size_bytes;
if (compare_fn(prev_elem, curr_elem)) {

swapped = true;
swap(prev_elem, curr_elem, elem_size_bytes);

}
}

if (!swapped) {
return;

}
}

}

How can we compare these elements? They
can pass us this function as a parameter.
This function’s job is to tell us how to
compare two elements of this type.

80

Generic Bubble Sort
void bubble_sort_int(void *arr, int n, int elem_size_bytes,

bool (*compare_fn)(void *a, void *b)) {
while (true) {

bool swapped = false;
for (int i = 1; i < n; i++) {

void *prev_elem = (char *)arr + (i - 1) * elem_size_bytes;
void *curr_elem = (char *)arr + i * elem_size_bytes;
if (compare_fn(prev_elem, curr_elem)) {

swapped = true;
swap(prev_elem, curr_elem, elem_size_bytes);

}
}

if (!swapped) {
return;

}
}

}

How can we compare these elements? They
can pass us this function as a parameter.
This function’s job is to tell us how to
compare two elements of this type.

81

Function Pointers
A function pointer is the variable type for passing a function as a parameter.
Here is how the parameter’s type is declared.

bool (*compare_fn)(void *a, void *b)

82

Function Pointers
A function pointer is the variable type for passing a function as a parameter.
Here is how the parameter’s type is declared.

bool (*compare_fn)(void *a, void *b)

Return type
(bool)

83

Function Pointers
A function pointer is the variable type for passing a function as a parameter.
Here is how the parameter’s type is declared.

bool (*compare_fn)(void *a, void *b)

Function pointer name
(compare_fn)

84

Function Pointers
A function pointer is the variable type for passing a function as a parameter.
Here is how the parameter’s type is declared.

bool (*compare_fn)(void *a, void *b)

Function parameters
(two void *s)

85

Generic Bubble Sort
void bubble_sort_int(void *arr, int n, int elem_size_bytes,

bool (*compare_fn)(void *a, void *b)) {
while (true) {

bool swapped = false;
for (int i = 1; i < n; i++) {

void *prev_elem = (char *)arr + (i - 1) * elem_size_bytes;
void *curr_elem = (char *)arr + i * elem_size_bytes;
if (compare_fn(prev_elem, curr_elem)) {

swapped = true;
swap(prev_elem, curr_elem, elem_size_bytes);

}
}

if (!swapped) {
return;

}
}

}

86

Function Pointers

bool integer_compare(void *ptr1, void *ptr2) {
...

}

int main(int argc, char *argv[]) {
int nums[] = {4, 2, -5, 1, 12, 56};
int nums_count = sizeof(nums) / sizeof(nums[0]);
bubble_sort(nums, nums_count, sizeof(nums[0]), integer_compare);
return 0;

}
bubble_sort is generic and works for any type.
But the caller knows the specific type of data
being sorted and provides a comparison
function specifically for that data type.

87

Function Pointers
Functions with generic parameters must always take pointers to the data they
care about, since the data could be any size!

We can use the following pattern:
1) Cast the void *argument(s) and set typed pointers equal to them.
2) Dereference the typed pointer(s) to access the values.
3) Perform the necessary operation.

(steps 1 and 2 can often be combined into a single step)

88

Function Pointers

bool integer_compare(void *ptr1, void *ptr2) {
// 1) cast arguments to int *s
int *num1ptr = (int *)ptr1;
int *num2ptr = (int *)ptr2;

// 2) dereference typed points to access values
int num1 = *num1ptr;
int num2 = *num2ptr;

// 3) perform operation
return num1 > num2;

}
This function is created by the caller
specifically to compare integers.

89

Function Pointers

bool integer_compare(void *ptr1, void *ptr2) {
// 1) cast arguments to int *s
int *num1ptr = (int *)ptr1;
int *num2ptr = (int *)ptr2;

// 2) dereference typed points to access values
int num1 = *num1ptr;
int num2 = *num2ptr;

// 3) perform operation
return num1 > num2;

}

However, the type of the
comparison function that e.g.
bubble_sort accepts must be
generic, since we are writing one
bubble_sort function to work
with any data type.

90

Function Pointers

bool integer_compare(void *ptr1, void *ptr2) {
// cast arguments to int *s and dereference
int num1 = *(int *)ptr1;
int num2 = *(int *)ptr2;

// perform operation
return num1 > num2;

}

91

Comparison Functions
• Function pointers are used often in cases like this to compare two values of the

same type. These are called comparison functions.
• The standard comparison function in many C functions provides even more

information. It should return:
• < 0 if first value should come before second value
• > 0 if first value should come after second value
• 0 if first value and second value are equivalent

• This is the same return value format as strcmp!

int (*compare_fn)(void *a, void *b)

92

Comparison Functions

int integer_compare(void *ptr1, void *ptr2) {
// cast arguments to int *s and dereference
int num1 = *(int *)ptr1;
int num2 = *(int *)ptr2;

// perform operation
return num1 – num2;

}

93

Generic Bubble Sort
void bubble_sort(void *arr, int n, int elem_size_bytes,

int (*compare_fn)(void *a, void *b)) {
while (true) {

bool swapped = false;
for (int i = 1; i < n; i++) {

void *prev_elem = (char *)arr + (i-1)*elem_size_bytes;
void *curr_elem = (char *)arr + i*elem_size_bytes;
if (compare_fn(prev_elem, curr_elem) > 0) {

swapped = true;
swap(prev_elem, curr_elem, elem_size_bytes);

}
}

if (!swapped) {
return;

}
}

}

94

Comparison Functions
• Exercise: how can we write a comparison function for bubble sort to sort

strings in alphabetical order?
• The common prototype provides even more information. It should return:

• < 0 if first value should come before second value
• > 0 if first value should come after second value
• 0 if first value and second value are equivalent

int (*compare_fn)(void *a, void *b)

95

String Comparison Function

int string_compare(void *ptr1, void *ptr2) {
// cast arguments and dereference
char *str1 = *(char **)ptr1;
char *str2 = *(char **)ptr2;

// perform operation
return strcmp(str1, str2);

}

96

Function Pointer Pitfalls
• If a function takes a function pointer as a parameter, it will accept it if it fits the

specified signature.
• This is dangerous! E.g. what happens if you pass in a string comparison

function when sorting an integer array?

97

Plan For Today
• Recap: Generics with Void *
• Finish up: Generic Stack
• Function Pointers
• Example: Bubble Sort
• Example: Generic Printing

98

Function Pointers
• Function pointers can be used in a variety of ways. For instance, you could

have:
• A function to compare two elements of a given type
• A function to print out an element of a given type
• A function to free memory associated with a given type
• And more…

99

Function Pointers
• Function pointers can be used in a variety of ways. For instance, you could

have:
• A function to compare two elements of a given type
• A function to print out an element of a given type
• A function to free memory associated with a given type
• And more…

100

Demo: Generic Printing

print_array.c

101

Common Utility Callback Functions
• Comparison function – compares two elements of a given type.

int (*cmp_fn)(const void *addr1, const void *addr2)

• Cleanup function – cleans up heap memory associated with a given type.

void (*cleanup_fn)(void *addr)

• There are many more! You can specify any functions you would like passed in
when writing your own generic functions.

102

Recap
• We can pass functions as parameters to pass logic around in our programs.
• Comparison functions are one common class of functions passed as

parameters to generically compare two elements.
• Functions handling generic data must use pointers to the data they care about,

since the data could be any size.

103

Generics Overview
• We use void * pointers and memory operations like memcpy and memmove

to make data operations generic.
• We use function pointers to make logic/functionality operations generic.

104

Plan For Today
• Recap: Generics with Void *
• Finish up: Generic Stack
• Function Pointers
• Example: Bubble Sort
• Example: Generic Printing

Next time: Floats in C

