Cs107 Handout 02
Winter 2020 February 17th, 2020

CS107 Midterm Examination Solution

Your midterms are graded, and we’ll be publishing the grades through Gradescope by the end of
the day.

The exam was challenging, and every problem was intentionally designed to drill you on
something you learned in CS107. That meant that for loops, clever if tests, and recursion didn’t
come in to play, but C string manipulation, generic programming, and bit-level calisthenics
certainly did. The median grade was a 32.0 out of 50, and scores ranged from 7 all the way up to
a perfect 50. Here’s a graph illustrating how the class did (each vertical bar represents a single
student exam, and everything’s sorted low to high.

CS107 Midterm, Winter 2020
50
45
40
35
30
25
20

1

vl

1

o

Read over your graded exam sooner than later, compare your answers to our solution, and read
through our comments on Gradescope maximize learning. © The grading criteria we used for each
of the five problems is exposed on Gradescope, so you should be able to understand why we
graded the way we did. If you see something you clearly did right but didn’t get recognized for it,
submit a regrade request through Gradescope and the person who graded your work will review it.

5
0

Problem 1: Bytes, Bytes, and Numbers

unsigned int amuse(unsigned int v) {
unsigned int count = 0;
v "=v - 1;
v >>= 1;
while (v) { v >>= 1; count++; }
return count;

b) For which values of v does amuse (v) return zero?
All odd values.

c) When amuse returns a nonzero value for nonzero v, what is the return value computing?
It returns the number of trailing zeros in the binary representation of v.

d) What does amuse (0) return?
31

Problem 2: C Strings

[**

* Function: parse_tokens

Assumes the incoming command is a string of one or more

tokens, and parses the command in place as described in the
problem statement. At the beginning of the loop, it's assumed
that command is addressing the first letter of a token. We
store that address in tokens, advance the count by one, and then
skip over all non-space tokens using strcspn. If after the

skip we're staring at a '\0', then we're done. Otherwise, we're
starting at a single space character, which we overwrite with

a '\0' before advancing to the next character (which is the
first character of the next token).

*

My solution handles the scenario where command is the empty string,
but your solution didn't need to worry about that.

* % ¥ Ok Ok Ok ¥ X F F F ¥ X *

size_t parse_tokens(char command[], char *tokens[]) {
size_t count = 0;
while (*command != '\0') {
tokens[count++] = command;
size_t n = strcspn(command, " ");
command += n;
if (*command == '\0') break;
*command = '\0’;
command++;

}

return count;

Problem 3: Serializing String Lists

/[**

* Function: serialize

* Implements the serialization algorithm as described in the
* the midterm. See inline comments for the play-by-play on how
* to crawl over a list like that described on the midterm.
*/
void *serialize(const void *1list) {
void *memory = malloc(sizeof(size t));
assert(memory != NULL);
size t length = sizeof(size t);
*(size_t *)memory = 0;
// everythng above is necessary, even when the incoming list is empty

while (list != NULL) {
char *chars = (char *)list + sizeof(void *); // chars are eight bytes in
size t num bytes = strlen(chars) + 1; // additional bytes needed
memory = realloc(memory, length + num bytes); // extend/move memory
assert(memory != NULL);
strcpy((char *) memory + length, chars); // £ill in new bytes
length += num bytes; // compute new length
(*(size_t *)memory)++; // promote size
list = *(void **)list; // drill forward

}

return memory;

Problem 4: Using binsert

/[**

* Function: entry cmp

* Accepts two entry *'s disguised as void *s, and compares
* their strings.
*/

int entry cmp(const void *vpl, const void *vp2) {
const entry *epl = vpl;
const entry *ep2 = vp2;
return strcmp(epl->word, ep2->word);

* Function: process_word

process _word is a thin wrapper around binsert, which either inserts a new
entry on behalf of the supplied word or surfaces an existing one. In either
case, binsert returns the address of the entry housing word.

* Tf found->word matches e.word (i.e. the pointers match), then binsert
inserted a new record into place. We need displace the copy of
the word pointer with the address of a heap-based snapshot of word.

* Tf found->word doesn't match e.word, then the word was already present, and
we just need to increment its frequency.

*

*/
void process word(entry entries[], size_ t *p nelem, char word[]) {
entry e = {word, 1};
entry *found = binsert(&e, entries, p_nelem, sizeof(entry), entry cmp);
if (found->word == e.word) {
found->word = strdup(word); // deep copy displaces shallow one
} else {
found->freqg++; // e was not copied in, increment existing freq by 1
}
}

Problem 5: Function Pointers and Generic Memory Moves

void *nth elem(void *base, size t n, size_t width) {
return (char *) base + n * width;

}

size t uniquify(void *base, int nelems, int width,
int (*cmp) (const void *, const void *)) {

int nretained = nelems;
for (size t i = nelems - 1; i >= 1; i--) {
void *pl = nth elem(base, i, width);
for (ssize t j =1 -1; j >= 0; j--) {
void *p2 = nth elem(base, j, width);;
if (emp(pl, p2) == 0) {

void *dest = pl;

void *source = (char *) pl + width;

size t num elems to move = nretained - i - 1;
memmove (dest, source, num_elems_to_move * width);
nretained--;

break;

}

return nretained;

